Present and Past:
ceramics and homesteads
Present and Past: ceramics and homesteads
An ethnoarchaeological project in the Buhera district, Zimbabwe

by
Anders Lindahl & Edward Matenga

Uppsala 1995
Abstract

The finds constituting our archaeological source material only represent fragments of the picture of the past. This concerns not least ceramic artefacts. As scientists within the archaeological field we are therefore obliged to extract as much information as possible from this material. Different types of analyses in many cases give us alternative models of interpretation. Often adequate material for comparison is missing, which if it had been available would have given priority to a realistic alternative interpretation i.e. true to real life. This is to a greater extent due to the lack of continuity in the handicraft which has roots in prehistoric times. The study of traditional pottery manufacture in the Buhera district, Zimbabwe has proven fruitful in this respect. The research is partly based on traditional methods for the study of vessel shapes and ornamentation, and partly on the technological analysis of pottery ware and raw materials.

Another dimension to the research is given by the study of recently abandoned homesteads in which case the sites are initially treated and evaluated according to purely archaeological methods. In a second stage people related to the farmsteads were interviewed. The archaeological conclusions were then compared with the oral information.

Keywords: Buhera district, ethnoarchaeology, ceramics, ceramic analyses, settlement pattern.
This publication is a tribute to the people of Buhera District, the majority of which belong to or are affiliated by kinship or marriage to the totem Eland (*Nhuka*), for their sincere effort during our fieldwork to understand archaeology, especially for putting up with our sifting through the debris of abandoned homesteads. They too had to entertain many questions about directions, the gravel and strip roads are rarely sign-posted, and the bush tracks never. Thank you people of the Eland (*Maita Museyamwa, mhofu yomukono*) as we always finally got to our destinations.
Table of Contents

Acknowledgement .. vii
Preface .. ix
1 **Introduction** .. 1
2 **The aim and history of research** .. 3
 - **Aim** .. 3
 - **Previous work** ... 4
 - **Pottery studies** ... 4
 - **Settlement-pattern studies** .. 6
3 **Methods** .. 9
 - **Excavation** .. 8
 - **Pottery analyses** .. 10
 - **Dokumentation** ... 10
 - **Sherd thickness distribution** .. 10
 - **Shape analyses** .. 11
 - **Petrographic microscopy** ... 13
4 **Buhera District** .. 15
 - **Geology, climate and vegetation** ... 15
 - **History** .. 17
 - **The rural landscape and daily life** .. 20
 - **Economic activities** .. 22
 - **Transport** ... 24
 - **Meals** .. 24
 - **The extended family** ... 25
 - **Leisure** .. 25
5 **The traditional pottery manufacture in Buhera District** .. 27
 - **The Raw materials** ... 27
 - **Forming the vessel** ... 30
 - **The surface treatment** .. 32
 - **Decoration** .. 32
 - **Firing** ... 33
 - **Vessel shapes** ... 35
6 **Potters, vessel function and shape analyses** ... 39
 - **Potter I** .. 39
 - **Potter II** .. 42
 - **Potter III** ... 43
 - **Potter IV** ... 44
 - **Potter V** ... 46
7 The Mafemba’s original homestead, descriptions and archaeological interpretations 49
 Topography .. 49
 Features of the site .. 51
 The excavation and the finds 52
 Archaeological interpretation 58
 Pottery analyses .. 60
 Sherd thickness distribution 60
 Rim diameter - vessel size - vessel function 62
 Results of the petrographic microscopy 64
 Dating .. 72
8 The Mafemba’s homestead: Oral investigations of the life-history of the site 73
 The inhabitants ... 73
 The use of the buildings on the ridge 74
 Other features .. 75
 Economic activities ... 75
 The abandonment of the ridge 76
9 The Lay-out of Kurotwi’s present homestead ... 79
 Houses .. 79
 Other features ... 81
10 Mukutukutu; Zizi’s homestead ... 87
 Topography .. 87
 Features on the site ... 87
 The excavation and the finds 93
 Archaeological interpretation 94
 Pottery analyses .. 96
 Oral investigation .. 97
11 Discussions and concluding remarks ... 99
 Migration .. 99
 What happens to a ceramic vessel when it is broken? 101
 From sherds to vessel types 106
 Abandonment of a site ... 108
References .. 113
Acknowledgements

Funding for this ethno-archaeological study was provided by SAREC in the framework of a bilateral research and training programme. Thanks are due to the SAREC offices in Stockholm and Harare.

Special thanks are due to Mr and Mrs Mafemba and the brother of the late Zizi for allowing archaeological investigations on the abandoned homesteads. We are indebted to the headmaster of the Reformed Church of Zimbabwe mission school, Nyashanu, Mr Samson Shaba, for providing us with free accommodation and food. He also made contacts with Mr Mafemba and the brother of the late Zizi seeking their consent for this unusual investigation.

As regards institutional support we are most grateful to Professor Birgitta Hulthen at the Laboratory of Ceramic Research, Lund University, who has given us unlimited support and encouragement during this work and to Phil. Cand Ole Stilborg, at the same laboratory, for stimulating discussions and constructive criticism. Furthermore we want to thank Professor Paul Sinclair at the Department of Archaeology, Uppsala University who coordinates the Swedish-Zimbabwe bilateral project. We sincerely appreciate his comments on our manuscript. We are also indebted to Debbi Olausson at the Department of Archaeology, Lund University, for reading the manuscript and to Thomas Nihlén Department of Geology, Lund University, for making the photographs and to Britt Nyberg at the same department, who completed some of the drawings.

In Zimbabwe acknowledgements are due to Dawson Munjeri, now Chief Executive of National Museums and Monuments for his unrelenting support for training, research and publishing, while Gilbert Pwiti and Robert Soper at History Department, University of Zimbabwe provided logistical support during Anders Lindahl’s research visits to Zimbabwe and the trips to Buhera District.
Preface

The idea to carry out an ethnological survey of ceramic manufacture and settlement habits was proposed by Anders Lindahl in 1988. The pottery study in Zimbabwe was carried out with the view to expand on an earlier PhD publication by Lindahl, "Information through sherds", based on a Swedish case study. Lindahl has used his experience on this earlier work to take responsibility for sections dealing with analytical work on ceramics and chapters 3, 5 and 6. The non-ceramic material was examined by Edward Matenga. Matenga, who is trained on Zimbabwean archaeology and history, employed his experience as a Shona speaker to select the rural district to study. All interviews were held in Shona which Matenga conducted and translated. Matenga has drawn from several literary sources as well as his own experience as a Mushona to provide a brief history of Buhera district and current rural life styles (chapter 4). Otherwise the authors take collective responsibility for the views expressed in this publication.

Anders Lindahl Edward Matenga
Chapter 1

Introduction

"It was the report of extensive ruins 'larger' said a native, 'than those of Zimbabwe', which induced us to make an expedition involving considerable hardship and unknown risks down in the district of the Sabi river. Our wagons, of course, could not go, as our way would be by the narrow native paths. Previous experience had warned us against depending on the native huts, so for the transport of our tents, beddings, and provisions we had to make considerable preparations."

In these words Theodore Bent (Bent 1896, p. 213) begins his description of his expedition 1891, one hundred years ago, into what is now Buhera district. They had to leave the wagon behind and Bent and his wife performed the trip on horse-back. The

Fig. 1. The roads in Buhera may sometimes be difficult to travel by normal cars, thus cross-country vehicles can be useful during fieldwork.
necessities were carried by 7 donkeys borrowed from the Chartered Company and a few native carriers "of reputed respectability".

Bent was the first to make scientific notes on landscape, geography, ethnography and the archaeology of this part of Zimbabwe and these are extremely helpful when trying to reconstruct the pre-colonial way of life.

In 1990 we started a new project in the same district, but replaced the donkeys and the carriers with modern cross-country vehicles. Buhera district is still a remote part of Zimbabwe with poor roads and bush-tracks (Fig. 1).
Chapter 2

The aim and history of research

Aim

The aim of the new project is to compare the results of an archaeological inquiry of recently abandoned farmsteads with oral testimonies by native villagers with the intention to find out the extent which ethno-archaeological studies may be of use in interpreting archaeological data. In this connection a great deal of interest has been focused on pottery and ceramic analysis.

The later prehistory of southern Africa presents exciting challenges for researchers for the absolute lack of written accounts predating the 16th century AD. On the other hand oral traditions have proved to be weak beyond a time depth of 200 years. We therefore rely heavily on archaeological reconstructions from the hunting and gathering and the farming communities as late as the 18th century. Of all archaeological material evidence ceramic vessels have been recognised as the most useful in reflecting group identities and in the reconstruction of chronological sequences. This recognition has given birth to a ceramic theory which has been discussed by many Africanists in recent years (Huffman 1980, 1989; Garlake 1982; Sinclair 1987). The chief protagonist has been Huffman who argues that "ceramic style can reflect group identity, ... ceramic style is complex, it can represent the repetitive code of cultural symbols in the larger, designed field, and can be used to recognise groups of people in the archaeological record" (Huffman 1980, p. 156). Huffman went on to argue that if this is the case then ceramics may show group migrations, although some migrations may not result in ceramic change, while some ceramic developments too, may not necessarily be a result of migration (Huffman, ibid). The ceramic theory is valid provided there are no institutionalised market system for pottery or long distance exchange of pottery, and where thus pots are made and
used by the same community or in the neighbourhoods. The use of pottery to support studies in archaeology recognises its numerous attributes which may be grouped into categories of shape, decoration, forming technique and function. It is more feasible with pottery than any other item found on archaeological sites in Zimbabwe, indeed in the whole sub-continent, to carry out a classification within and between assemblages.

The present work seeks to reveal the ideological relationship between the potter and his vessels, to analyse the manufacturing techniques, examine the sources of clay, determine why one source is preferred to another. This work will also relate the life history of a pot from the clay source to the workshop into the household and then out when it breaks.

Previous work

Pottery studies

As early as 1929 Caton-Thompson had observed that pottery found on the small zimbabwe of Gombe in Buhera District was almost identical to pottery at Dhiodhlo Ruins some 200 km to the west (Caton-Thompson 1931 p. 132). The possible contemporaneity of the two zimbabwes is supported by oral traditions from Buhera (Beach 1994). Otherwise the first major attempt to classify pottery from Zimbabwe and other parts of southern Africa was done by Schofield (Schofield 1948). In Zimbabwe a much more serious attempt to classify, pottery assemblages was pioneered by Robinson. A commercial farmer who turned archaeologist Robinson relied on his own common-sense to classify the much famed Early farming period assemblages of Gokomere (Robinson 1963) and Mabveni (Robinson 1961 a) and the large yield of pottery from the Great Zimbabwe excavations (Robinson 1961b). Robinson and Summers were the first archaeologists to produce a chronological sequence of the Early and later Iron Age periods in Zimbabwe.

On a regional scale pottery studies were used to support a migration hypothesis for the advent of farming communities into ea-
ourhoods. The use of
ignises its numerous
ies of shape, decor­
re feasible with pot­
haeological sites in
; to carry out a clas-
ological relationship
the manufacturing
determine why one
ll also relate the life
workshop inta the

observed that pottery
thera District was al­
some 200 km to the
ssible contemporane­
traditions from Bu­
try to classify
southern Africa was
bw a much more se­
es was pioneered by
archaeologist Robin­
sify the much famed
ere (Robinson 1963)
ield of pottery from
1961b). Robinson and
duce a chronological
ods in Zimbabwe.
used to support a mi­
communities into ea­
stern and southern Africa, the so called Bantu migrations (Soper

Meanwhile other scholars complained that there was too much
concentration on ceramic typology and thus challenged migration
stories (e.g. Hall 1983). They argued that ceramics had been ex­
excessively used to support migration theories to the effect one
would imagine there were “Bantu speaking pots”.

The ethnological or ethno-archaeological approach to the under­
standing of ceramics is a new methodology in Zimbabwe at least.
In order to assess the value of pottery in archaeological determi­
nation one has to understand the relationship between the pot
and its maker. In order to do this one has to study current tradi­
tional pottery industries.

As far as the authors know, the first such study in Zimbabwe
was carried out by Huffman in 1969–1970 in a Bulawayo residen­
tial suburb (Huffman 1972). The sample area, was not a typical
case as it was an urban population where the pottery was in­
tended for sale on a commercialised market. The potters were
Shona speaking resident in a predominantly Ndebele speaking
town. On the results of this study Huffman wrote: “A study of mo­
dem Shona functional types from Bulawayo township indicates
that it is possible for archaeologists to construct ceramic classes in
the same way as the potters. Shape is weighted first, size second
decoration third, This method will, characterise a total ce­
ramic assemblage and, therefore aid in comparative studies”
(Huffman 1972 p. 66).

Huffman later carried out another ethno-archaeological ceramic
survey, this time, picking ceramic samples from various groups,
Tonga and Korekore (Zambezi valley), Ndebele (Chipinge, south­
eastern Zimbabwe), Pedi and Venda (South Africa) (Huffman
1980). The pottery was analysed using multidimensional proce­
dures of classification. The results showed that depending on the
classification procedure taken, significant stylistic differences
could be discerned between the pottery of the various groups which could be used as identity markers for the respective groups.

The only other significant contribution to the understanding of modern Shona pottery is Ellert’s “Material Culture of Zimbabwe” (Ellert 1984). This however provides a basic description of manufacturing techniques, vessel types, decoration and functions, giving a brief inventory of the various kinds of vessels.

Settlement-pattern studies

Ethno-archaeological studies of settlement patterns in southern Africa were pioneered in the 1980’s by Huffman (Huffman 1981, 1984, 1986, 1986 p. 159). Huffman’s thesis proposed that it is possible through the study of modern settlement pattern to interpret the socio-cultural meaning of space on Iron Age archaeological settlements. Huffman used ethnographic data from existing works on South African ethnic groups, (e.g. Berglund 1976; Hammond-Tooke 1974; Kuper 1980) to propose archaeological antiquity for the cattle oriented settlement pattern, so called the Bantu Central Cattle Pattern, seen among most groups in South Africa where cattle pens are situated at the centre of the homestead surrounded by residential house units. Amongst the centrally located cattle pens are grain storage bins, while important persons were also buried inside the cattle pens. Huffman argued that this pattern symbolised the central role of cattle as sacrifice to the ancestors and as bridewealth. According to Huffman this theory could explain some 2nd millennium Iron Age settlements in the south-west of Zimbabwe (Leopards Kopje and Woolandale) (Huffman 1986 p. 302).

Archaeological settlement pattern studies in Zimbabwe were largely inspired by the presence of the extensive stone-walled site of Great Zimbabwe. Huffman thus isolated a second settlement pattern which he called the Zimbabwe Culture Pattern (Huffman 1986). He argues that the spatial configuration of Great Zimbabwe set criteria for class distinction where: a) people resident
the various groups in respective groups.
The understanding of culture of Zimbabwe description of manu-
and functions, gives-
essels.

patterns in southern man (Huffman 1981, proposed that it is posi-
t pattern to interpret age archaeological set-
from existing works on and 1976; Hammond-
eological antiquity for led the Bantu Central in South Africa where f the homestead sur-
the centrally located nportant persons were 1 argued that this pat-
sacrifice to the ances-
man this theory could (lements in the south-
Woolandale) (Huffman lies in Zimbabwe were ensive stone-walled site-
ed a second settlement lture Pattern (Huffman guration of Great Zim-
here: a) people resident inside enclosures were wealthier and more important than people living in house units outside the stone enclosures. b) Persons lodg-
ing on the Zimbabwe Hill were more powerful than people living below the hill. The king at Great Zimbabwe therefore lived on the hill.

Huffman identified yet another pattern common among matri-
lineal societies living north of the Zambezi River (Huffman 1989). This he called the Forest Pattern. Huffman made other important observations about the socio-cultural meaning of space in a settle-
ment, "the absolute size of a capital and its relative difference from subordinate settlements vary with the degree of social stratifica-
tion" (Huffman 1986 p. 293). Thus there is a relationship be-
tween the size of a settlement and the degree of political stratification.

There is regrettably no major ethnological studies of settlement pattern of the modern Shona people of Zimbabwe to date. The Shona homestead has been described in the context of providing and understanding of the Shona world at large and thus no ana-
lytical details - plans, diagrams, photographs and discussion - have been provided (Bourdillon 1987; Bullock 1928; Holleman 1952). Ellert and du Toit may have gone a little further (Ellert 1984; du Toit 1981). From the point of view of archaeology, the Shona village or homestead has been regarded as fundamentally different from the archaeological remains of the zimbabwe stone enclosures. We should however note that not all people lived in zimbabwes. The study of Shona homesteads should therefore provide further understanding of the ordinary Iron Age settlements, some of which were the common residences during the Zimbabwe period (1200–1500 AD).
Chapter 3

Methods

Excavation
The target area for the investigation was the surroundings of Nyashanu Mission in Buhera district, where two different farmsteads were chosen. The two farms were abandoned in 1959 and 1989 respectively. However different in their topographic location, one on the top of a small ridge and the other at the base of a hill, both farms appear to have had cropping and husbandry as their main subsistence. An investigation of this kind is more successfully completed with the voluntary cooperation of the previous owners or inhabitants of the farmsteads.

We found it easier to approach the villagers through a local authority, namely the headmaster of Nyashanu Mission.

As a primary stage the procedure was to treat the sites entirely as archaeological entities. Plans of the sites were drawn and remains of the buildings and other features were documented through photographs. Most of the layout of the homesteads was still visible on the ground surface.

From archaeological experience we know that a lot of information about the human activities at a site can be retrieved from rubbish dumps and pits. Consequently the excavations were concentrated on these areas of the site. After the excavations had been completed and the first impressions noted, the data were evaluated according to archaeological methods.

The next stage involved interviews with previous owners and inhabitants of the farmsteads, the head-man of the area and people living in the neighbouring farmsteads. The archaeological conclusions were then compared with the oral information.
Pottery analyses
Documentation
Pottery is the group of archaeological artefacts beside stone objects that is best suited to withstand weathering or other physical and chemical attacks. Furthermore, ceramic pots have always played an important role in day-to-day life, as is the case even today. Pottery is therefore widely used as one of the most important sources of information of our prehistoric society. However, the information concealed in the pottery has to be transformed into meaningful and testable data. This is achieved by means of a thorough registration of measurable variables and special features of sherds and whole pots. The documentation includes measurements of weight, thickness, amount and size of temper, notations of type of temper, vessel forming technique, firing atmosphere, shape of sherd, surface treatment, ornamentation elements and the arrangement of decoration. Special features associated with function and use are also noted in the registration. The registered data is statistically tested and forms the bases for further analysis.

Sherd thickness distribution
The method is based on the assumption that vessels with different function also vary in the thickness of the vessel wall. The method therefore is a means to extract and verify different vessel types. Calculations of the amount of how large a part of a vessel, either based on the number of sherds or on the weight of the sherds, can both give misleading results as to how much ceramic material a sherd represents. This is the case in particular when the amount of ceramic material is assumed to represent the corresponding proportion of the vessel surface. If the amount of ceramic material is calculated on the basis of the number of sherds, then a comparison between sherds of different thickness can only be undertaken if all the sherds are of the same size. If this do not apply, then this kind of comparison is of little or no value. If only the
facts beside stone ob-
oring or other physical
pots have always
as is the case even to
of the most important
ity. However, the in-
be transformed into
ed by means of a thor-
lar special features of
includes measure-
e of temper, notations
ie, firing atmosphere, ntation elements and
ures associated with
ation.
he bases for further
weight is regarded, then a sherd having a thickness of, say 5 mm, would give the impression of representing a much smaller amount of ceramic material (surface area) than one which is 10 mm thick, when in fact it could represent exactly the same proportion of the surface of a vessel (Hulthén 1974, p. 2).
For this reason a calculation of the adjusted weight has been performed. As a standard reference thickness 10 mm has been chosen. The weight of all the sherds thinner than this reference will be increased proportionally to their thickness. In the same way the weight of sherds thicker than 10 mm will be decreased proportionally to their thickness.
On condition that the sherds comprising the material of the investigation have a similar density, the value of the adjusted weight can be calculated according to the following formula:
\[\frac{W \times 10}{T} = W_a \]
where
\[W_t = \text{true weight (g)} \]
\[10 = \text{standard thickness (mm)} \]
\[T = \text{sherd thickness} \]
\[W_a = \text{adjusted weight} \]

Shape analyses
Vessel shapes were studied through proportional analyses. One measure the distance from the symmetry axis and from the base axis to certain points of the vessel profile. The definition and the terminology as regards the characteristic points (Fig. 2) are designed by Nordström (Nordström, 1972, pp. 72.) on the bases of Birkhoff and Shepard (Birkhoff 1933; Shepard 1963, p. 226). The characteristic points are: the rim point (R), the vertical tangent points (Vn), the inflection points (In), the tangent point (T), the corner points (Cn) and the base points (Bn). The distance measures are converted into percentage of the vessel height. The percentage values obtained are then plotted in a coordinate system in such a way that the vertical symmetry axis coincides with the Y-axis and the base plane with the X-axis. Nordström has also
Fig. 2. Shape analyses. The transformation of a vessel into a diagram.
Fig. 3. Shape analyses. Comparison of necked vessels with vessels with no neck.

defined another method to group vessels with a similar profile by arranging them into shape modes (Nordström 1972, pp. 68, Pls. 7-10). In order to compare necked vessels with vessels without neck, a standard vessel with neck has been selected and the part below the inflection point has been regarded and measured as a complete un-necked pot (Fig. 3).

The method is used to study if and how different potters (from the same area and with the same cultural background) vary in their idea of how to shape a pot for a certain function. One advantage of this method is that vessels can be compared regardless of size. The numerical point values provide a suitable base for statistical analyses.

Petrographic microscopy

Petrographic microscopy is carried out on thin sections of pottery, i.e. a piece of a sherd which has been ground to a uniform thickness of 0.03 mm. The thin section is analysed under a polarising microscope in magnifications ranging from 25x to 1000x in both parallel and polarised light. This analysis makes it possible to identify different minerals within the silt and sand fractions.
Furthermore remnants of organic matter, diatoms, accessory minerals and other impurities of the clay are studied.
Measurements and calculations performed on the tempering material are: 1) the maximum grain size (max. grain size), 2) the mean value of the five largest grains in the sample (mean max. grain size), 3) estimate of the amount of added and natural temper (grains larger than 0.1 mm), 4) measuring the length axis of 100 grains, following a fixed line across the thin section.

Particular observations of specific minerals, and other features concerning the temper and the clay, have been noted.

Microscope colour photos of the thin sections provided a means to divide a large number of thin sections into groups (MIPHO-groups) by visual classification, e.g. group clays with a similar appearance. At least two photos from different parts of the thin section have been taken in order to minimise erroneous groupings owing to local variations (Lindahl 1986, p. 29).
Chapter 4

Buhera District

Geology, climate and vegetation

Buhera District is situated in the south-eastern part of Zimbabwe (Fig. 4). Much of Buhera lies in middle veld (open grassland) with an altitude ranging from 600 m - 1200 m above sea level, while the south-eastern area is part of the Sabi valley and forms part of the low veld with an altitude below 600 m.

Buhera forms a wedge running roughly north-west – south-east between the Sabi River to the north and the Nyazvidzi – Devure rivers to the south. The outstanding features of the landscape are the granite hills and ranges (Fig. 5). The Gombe range of hills lies in the north-west end of the district. The Marabada line of hills cuts across central Buhera and forms a divide between the Sabi valley and the middle veld along the 900 m contour. The bedrock of Buhera, like in many parts of the middle veld, consists of granite and the more or less planar surface is interrupted by granite cones, castle kopjes, and inselbergs.

Buhera is part of the hot region and maximum temperatures of 40°C are not uncommon at Birchenough Bridge on the Sabi. The south-east part receives only meagre rainfall because it lies in the rain shadow of the south-east trade winds from the Indian Ocean which blow over the eastern border highlands. The amount of rainfall increases with increasing altitude. On average Buhera receives between 400 – 600 mm of rainfall per annum.

Buhera has basically maintained a rural economy. Natural vegetation has been cleared in many areas of the highlands for subsistence agriculture and to meet fuel requirements. The northwest region is dominated by Brachystegia speciforms which grow on light sandy soils. This is one of the most widespread tree species in Zimbabwe. In the Sabi valley and in the low riverine areas Mopane, Acacia and species of Combretum are the most common...
Fig. 4. Map of Zimbabwe with a detailed map of Buhera. 1. investigation area, 2. Zimbabwe ruin, 3. business centre, 4. river, 5. district boundary, 6. road.
Fig. 5. The landscape of Buhera. Different species of trees e.g. Brachystegia spp. Acacia and Baobab are scattered over areas not used for cultivation. The more or less flat country is interrupted by granite cones, inselbergs and castle kopjes.

trees. In these areas the original vegetation has survived because the soils are not suitable for agriculture. Trees are generally deciduous shedding leaves in the dry season.

History
Buhera provide a wealth of evidence indicating human settlement in prehistoric times from the Stone Age to the advent of late Iron using and Farming Communities. A number of rock painting sites have been reported. Most rock paintings in Zimbabwe were done in the late Stone Age period between 10 000 years to 2 000 years BP. The practitioners of the late Stone Age culture in southern Africa are generally believed to be ancestral San populations (Garlake 1988), otherwise called the Bushmen. As yet none of the
Buhera sites have been investigated but comprehensive studies have been done elsewhere in Zimbabwe (Goodall 1958; Cooke 1974; Garlake 1988; Walker 1995) and in South Africa (Lewis-Williams 1982) to provide definitive information about stone age life styles.

Regrettably, there is nothing on record from Buhera district for the period intervening between the late Stone Age and 1200 AD when the Zimbabwe culture emerges. This seems to arise from lack of research rather than lack of evidence.

The presence of about 11 Zimbabwe sites in this small area implies that it was a very important tributary state of the Great Zimbabwe state system during the mid 2nd millennium AD. The word Zimbabwe derives from the Shona expression “dzimba dza mabwe” which means “houses of stone”. The stone ruins in Buhera are counted among the 300 or more Zimbabwe Ruins which were built and occupied between the 13th and the 18th centuries AD. The most impressive of these is of course the Great Zimbabwe. It is notable that the fourth largest Zimbabwe, Matendera, is in the Buhera cluster of ruins. The Zimbabwe sites were built by ancestral Shona communities to serve as venerated courts where rulers and their important vassals lived (Garlake 1973; Sinclair 1987).

The antiquarian Bent was the first scholar to investigate the ruins in Zimbabwe. When he heard about the Ruins in Buhera, he travelled from Great Zimbabwe to see Matendera and Chiurwi Ruins in 1891 (Bent 1896). He was followed 14 years later by a professional archaeologist, MacIver, who dug a few test pits at Matendera (MacIver 1905). In 1929 Caton-Thompson did limited work at the at the zimbabwe sites at Gombe, Chiwona, Muchuchu and also at Matendera (Caton-Thompson 1931).

The history of Buhera in the last two or three hundred years is dominated by the Hera dynasty (totem Shava Nhuka - Eland) upon which the name of the district is derived. The present record is largely based on oral traditions which relate the occupation of Gombe mountain in the north-west end of their territory by the
comprehensive studies (Goodall 1958; Cooke 1977) about stone age from Buhera district for one Age and 1200 AD seems to arise from this small area implies the site of the Great Zim­ millennium AD. The word “dzimba dzakabwe” ruins in Buhera are Ruins which were built 8th centuries AD. The great Zimbabwe. It is no­ntendera, is in the Bu­ere built by ancestral courts where rulers and 3; Sinclair 1987).

To investigate the Ruins in Buhera, he latendera and Chiurwi­ved 14 years later by a dug a few test pits at 1-Thompson did limited hiwona, Muchuchu and three hundred years is Shava Nhuka - Eland) ved. The present record relate the occupation of their territory by the founding father Mbiru-Nyashanu. Subsequent fractional squabb­les called for the intervention of the Rozvi. The latter feature prominently in Portuguese documents from the 17th century. The Hera explicitly claim to have built the loopholed zimbabwe on top of this massive ridge. Caton-Thompson records that this elongate hill was also called Mai yawaHera (which means Mother of the Hera) (Caton-Thompson 1931, p. 131). Oral traditions which the author knows point that the full name of the mountain and ruins is Gombe ravaHera (meaning the large gourd of the Hera). While living on Gombe mountain the Hera sought recognition as a tribu­tary chieftaincy (Sadunhu) from the Rozvi rulers who were probably based at the zimbabwe of either Dhlodhlo or Naletale in the west. In later years they were displaced by the Njanja people who had a long standing relationship with the Portuguese as trade inter­mediaries (Beach 1994, pp. 72; Ellert 1994). The Hera shifted their capital from Gombe mountain to Bedza Hills and later fur­ther south-east in the Marabada Hills which today constitute the central area (Beach 1980, 1994; Holleman 1949, 1952) (Fig. 4). The Hera dynasty bears the reputation of being one of the most stable one in Zimbabwe. In addition the Hera have retained most of the land they held in pre-colonial times (Beach 1990 pers. corn).

During the 16th – 19th centuries Buhera is especially signific­ant as the last stronghold of Tohwechipi, the last Changomire (king) of the Rozvi. The Rozvi are associated with a number of zimbabwes in south-western Zimbabwe including Dhlodhlo and Naletale. They were the last Shona state before the coming of the Matabele from Zululand, South Africa. In the 1830’s the Rozvi were besieged first by Nguni group under a woman leader, Nyam­azana. In the 1850’s the Matabele under Mzilikazi sent the Rozvi state into rapid disintegration, forcing one group led by the last ruler, Tohwechipi to retreat to the Mavangwe hills in Buhera (Beach 1980, p. 267). Tohwechipi's grave in the Mavangwe Hills is a protected national monument.
The pace of modernisation in Buhera District in response to the introduction of European civilisation has been very gradual for lack of immediate commercial and industrial interests. The phosphate mining village of Dorowa and highway stopover at Birchenough Bridge (Mutare - Masvingo) are situated on the fringes of the district and can at best exert gradual influence on life styles. Hence the Buhera District has retained its “rustic” character.

The rural landscape and daily life
Most areas intervening between streams have been cleared for cultivation, while the hills and areas along the stream banks have retained substantial natural vegetation.

A homestead usually consists of three or four circular pole and dhaka (daubing clay) houses, covered by a conical grass-thatched roof. Each house has its assigned function. The basic set-up is: one kitchen for each wife (polygamy is not uncommon); this is also her sleeping house; one sleeping house for the boys (gota), one sleeping house for the girls (nhanga) and a granary (dura) is now often a square house with a pyramidal roof and a raised floor resting on a square setting of nine stones. If ants were to invade they would be noticed and stopped on climbing stones. Normally there is a primary granary where the maize is kept before the corn is removed from the cob, a chicken pen and pens for livestock also belong to the farmstead. These are usually situated on the periphery of the farmstead. Quite a lot has been written about the Shona homestead (e.g. Ellert 1984, pp. 8; du Toit 1981), but the situation is fast changing, for example rich families now have a modern rectangular brick house as the main living unit although they may incorporate the traditional components described above.

The day to day maintenance of the homestead is the duty of daughters or daughters-in-law who sweep the houses and polish the floor with cow dung. They wash the dishes and put them on the drying rack, out of the way of animals (Fig. 6). They also remove the ashes from the fireplace and sweep the yard, which
district in response to the changes in the pastoral interests. The pastoral way of life has been very gradual for the Shona, situated on the fringes of the European influence on lifestyle, retaining a "rustic" character.

Trees have been cleared for homes, and the stream banks have been excavated for water, with four circular poles and a conical grass-thatched roof. The basic set-up is: one raised floor resting on four poles (Fig. 6). This is also referred to as the "boys" or "dora" house, one sleep-over at Birchenough Park, situated on the fringes of European influence on lifestyles.

Fig. 6. Household activities in a homestead. Washing dishes and putting them on a rack, out of the way for the animals, is one of the duties for daughters and daughters-in-law.

should be kept bare of grass (to minimise the risk of snakes coming in to the farmstead) (du Toit 1981, p. 8). Hereby the farmstead is kept very clean and tidy. All waste – ashes, bones, potsherds, tin-cans etc. – is thrown into the garbage pit or garbage area. Thus here we have a midden assemblage of all daily things used in the household.

Utensils made of pottery, wood and wickerwork are still among the most commonly used in the daily life. Though the cooking pot made of cast iron is beginning to be more frequent, the cooking pot made out of clay is still believed to give the food a better flavour. Although the pots have a brick-red colour when they are new (oxidized firing), the cooking pots turn black all the way through the stoneware when they have been used for only a few weeks. This
blackening of the ware is caused by repeated usage over an open fire (Lindahl 1991).

The number of clay pots in an ordinary household are 2–5 cooking pots and 8–12 storage/serving vessels of different sizes. One potter in Buhera had a large quantity of cooking pots (approx. 10–12) of which some were very big (see below page 46). These pots were not for her own household. She used to lend them to families in her village when they had visitors or parties as a service to her neighbours without getting any payment in return.

Economic activities

A summer day usually begins just before sunrise with men leading draught animals to the fields a distance of anything up to three kilometres away. The women often follow later. Very few machines if any are used on the farms. On the contrary, the hoe and the ox-driven plough are the most common tools for cultivation.

The more physically demanding tasks such as ploughing are done by men. Both sexes however work together at weeding and harvest. Occasionally communal labour is invited and the reward is a beer party in the afternoon. Apart from their economic value as a reward for services given, such beer parties constitute essential social functions.

The success of a crop in the absence of irrigation is entirely dependent on the weather. The more successful crops are sorghum, finger and pearl millet.

Young boys look after the cattle in summer. There are no paddocks and the animals can forage on virtually all open land. The boys used to be engaged in a number of games while herding cattle: pseudo-card games with leaves where the losers have to look after the cattle, hide and seek and bird shooting. The games should not distract the boys' attention on the herds lest the animals trespass into the fields. If this happens the boys have to escape or face corporal punishment.
Cattle have played an important role in African rural economy for many centuries (Kileff 1970, p. 14; Bullock 1928; Bourdillon 1987). A man’s wealth is often based on the number of head of cattle which he owns. This may vary from a few to about 20 heads. Business deals may still be concluded by the exchange of cattle. While much of the “lobola” (bridewealth/price) is now settled in cash many families still insist that part of the transaction called “the cow of the mother” (in fact a cow and its young) should be a real beast and cannot be exchanged for its monetary value. Following the tradition of ancestral worship a bull is dedicated to the deceased head of the family and give his name in a ceremony in which finger millet is sprinkled on the beast. After a number of years the beast is slaughtered, the meat taken without salt in a ritual in which people sing, beat drums and drink beer (Bourdillon 1987, p. 232). Cattle today are a valuable source of cash for school fees as an increasing number of rural children stay longer in school.

In the dry season (May to October) animals are let loose during the day and sought after by the boys in the afternoon. If they stay away at night they risk the danger of being preyed upon by e.g. the spotted hyena or other wild animals. Incidentally, the hyena (and the owl) are believed to be the domesticates of witches or wizards (koroyi watakati). The hyena is the means of transport while the owl is the guide. The rural folk’s fear of witches is pervasive and is often fundamental in deciding relations between neighbours (Gelfand 1967).

A major activity in the dry season is gardening. Gardens are situated by the bore-hole, stream or vlei (marshland/wetland). It is primarily the duty of women to water the gardens. Both men and women are engaged in basketry. Otherwise the dry season is a period of relative rest when people may go to beer parties where some handicraft may be manufactured while drinking.
Transport

Only business people and a few school teachers can afford to own a car, nor is a bicycle within the means of many people. Yet only a few routes are served by buses in the district. The majority of local trips of up to 30 km are therefore made on foot. It is not unusual to see people walking with loads of 10 to 15 kg on their heads. Otherwise, ox-driven carts are used for the transportation of goods. Sledges too are still used although their use has been discouraged for the damage they can cause to the soil.

Meals

Fifteen or twenty years ago a family had only 2 meals a day (lunch and supper). Today it is customary to take a mid-morning break at work for a cup of tea sweetened with sugar. What is considered to be a wholesome meal should include sadza (a thick cereal porridge). Sadza used to be made from pearl millet or finger millet, but today maize is more common.

The communal aspect of rural life is clearly illustrated by the fact that one portion is first served for all boys in the family, then one for the girls and another for the parents. The eldest child set the stage by eating first followed by the second eldest and so on. After this initial round no order is followed, but the youngest has the privilege to round off the meal. Vessels used for different activities naturally have different names even if they have the same size and shape. A vessel used for cooking sadza is for instance called Shambakodzi, a vessel for cooking pumpkins and sweet potatoes Shangwa and a vessel for cooking relish Hadliana. The storage vessels also have their names, which are determined by both size and function. A vessel used for storing the beer brew is called Gate or Nyengo. A vessel used for serving beer or water is called Pfuko and the drinking vessel, which has the same shape as the Pfuko but is smaller is called Chipfuko, the prefix "chi" indicating a diminutive. These drinking vessels may sometimes be quite large (c. 25 cm in height and diameter) since they are not
Bakers can afford to own many people. Yet only a few. The majority of local people. It is not unusual to see 15 kg on their heads. For the transportation of objects, their use has been discovered, and the soil. N only 2 meals a day (lunch and a mid-morning break) are consumed. What is considered sadza (a thick cereal porridge) millet or finger millet, is clearly illustrated by the boys in the family, tenants. The eldest child serves the second eldest and so on, but the youngest has his own dishes for different activities if they have the same disease. Sadza is for instance used for cooking pumpkins and sweet potato relish Hadliana. The tastes are determined by storing the beer brew in a building. Serving beer or water is served in a vessel similar to the prefix “chi” individuals may sometimes be used as a personal drinking cup, but are passed around. The Shona names and the vessel functions were obtained during fieldwork 1988 – 1991 (Lindahl 1990a, 1990b, Lindahl et al. 1991).

The extended family
The father is the head of the family and reserves the right to make all important decisions. Rural people of Buhera have retained a sense of communalism to the degree that elder brothers and sisters – if they are considered to have the financial capacity – should look after the welfare of younger members of the family and their families. This is almost a matter of obligation regardless of the parents alive or dead.

This symbiotic network may extend to cousins, step cousins as it is reinforced by a system of kinship traced back through several generations (Holleman 1952, p. 25; Bourdillon 1987, pp. 26). It is noticeable that as people become increasingly dependent on the industrial economy these bonds are being loosened.

Leisure
When it gets dark in the evening it is quite common that the family gathers around a fire outside the houses. Most often someone is telling stories. Both children and grown-ups are listening. The children are sitting or lying down on straw-mats, where they may fall asleep, while the elders usually are working with something that does not require much light.

As late as in the 1970’s it was not unusual that children of an extended family were rallying together in the evening for a variety of games and singing. This was the time when adolescents could choose their mates. In these cases the boy usually gave the girl a present (e.g. a pin for her dress) as a token of his affection, when they were dancing and singing. The girl would then think about it and later give him her answer.

Today the focal points in the village are usually a few places with gramophones where the youngsters can dance to modern music.
music. On Saturdays and Sundays adolescents today would prefer to spend the day at the emerging “growth points” (rural business centres) to attending a traditional social gathering.

All this said it must be noted that Zimbabwe today is on the threshold of rapid socio-economic transformation and rural places like Buhera District will surrender their “rustic” values to change in the next few decades.
Chapter 5

The traditional pottery manufacture in Buhera District

In order to understand and correctly interpret the ceramic assemblages of an archaeological site it is of the utmost importance to have at least a basic knowledge of the factors involved in the local manufacturing process. The study of traditional pottery manufacture in a basically agrarian society, like the one in Zimbabwe, becomes one of the most reliable sources of knowledge (Lindahl 1990a, 1990b, Lindahl et al. 1991; Huffman 1972, p. 66).

Five potters have been interviewed in Buhera District in order to establish the various forms of pottery production. The interviews followed a predesigned questionnaire comprising 72 questions, concerning the collection of raw materials, technology, vessel shape and vessel function, symbolism in the decoration as well as rites, myths and taboos involved in the production of pottery.

There are only female potters. Men may participate in the transport of clay and the ready-made pots. Potting is a part-time job, which means that these women usually tend the fields and only make pots when the farming season is at a stand-still.

The raw materials

All potters used local clay, located in river banks or in association with smaller streams (Fig. 7) (cf. Huffman 1972, p. 66). In most cases the clay was dug up within a radius of up to three kilometres from the homestead. However, one potter occasionally used a clay source located approx. 30 km from her home, but as she said “Only when I have adequate transport, because the clay is too heavy to carry such a long distance”.

Generally only one clay is used, but in two cases the potters sometimes mixed up to three different clays or soils. The initial
phase in working the clay is to break it into small pieces with the hands. Thereafter the clay is placed on a hard surface and pounded with a wooden stick. During this process water is added successively until the clay has reached a suitable working plasticity (Fig. 8).

The clays used by the potters in Buhera are naturally tempered, that is the clay contains enough coarse grains to prevent the pots from cracking when they are dried and fired. Therefore no temper has to be added to the clay by the potter. As mentioned above some potters mixed different clays or soils. These vary in their grain size distribution and thus one can say that the potters tempered the fine clay with a coarse sandy one.

After the clay is properly worked it is usually left to “rest” for at least one day. It may also be stored for several months in a pit covered with a damp cloth and stone slabs.
a stream.

The choice of clay is of the utmost importance. In one particular case when the potter used two different clays, one was silty with a large amount of coarse particles whereas the other was comparatively fine. The latter was basically used to make small vessels like cooking and drinking pots. When she tried to make large containers of that clay they collapsed during the process. The composition of the clay made it unsuitable for large vessels. The coarse clay, on the other hand, was well suited for the manufacture of both small and large vessels. The reply to the question why she didn't use that specific clay for all the pots, was “Don't you understand that such a coarse clay is not adequate for cooking pots, the large grains come off when you stir the food and you don't want gravel in what you are eating, do you?”
Forming the vessel

The vessel forming technique is a combination of modelling and coiling. The potter places a thick coil on a metal plate or similar surface and pulls the clay upwards while slowly rotating the plate (Fig. 9). Usually the potter knows how much clay is needed for a vessel of a particular size, but for large vessels it is impractical to start with all the clay that is required. Additional coils are therefore added when needed. The pots are made in two stages. In the primary stage the upper two thirds of the vessel are formed to its final shape, including surface treatment and decoration (see below). The vessel is now left to dry for a few hours. However, it is important that the lower edge must not dry. Therefore it is

Fig. 9. Forming the vessel. A large coil is placed on a metal plate or similar surface. The vessel is formed by pulling the clay upwards while rotating the plate. Additional coils are added if needed. The upper 2/3 of the vessel is first formed to its final shape including surface treatment and decoration.
ation of modelling and metal plate or similar slowly rotating the plate. Clay is needed for vessels it is impractical to. Fitional coils are there- in two stages. In the vessel are formed to its and decoration (see below hours. However, it is dry. Therefore it is protected by means of for instance a wet cloth. Thereafter it is turned upside down and the bottom is formed (Fig. 10).

The pots almost exclusively have rounded bases, cooking vessels or storage vessels alike.

The making of pottery is always carried out in the shade, most often in the kitchen-house. If the clay is exposed to direct sunlight or wind during forming and the initial stage of the drying process, the outer surface dries too fast, causing the vessel to crack.

Fig. 10. The leather hard vessel is turned upside down and the bottom is formed.
The surface treatment
When the vessel shape is completed the surface is smoothed with the hand and ample water. The pot is thereafter left to dry until it has reached a “leather hard” state. The surface is then polished with a rounded smooth pebble from a river bed (Fig. 11). Practically all pots have a polished surface and depending on the time of polishing they may sometimes reach a near metallic lustre. This is especially the case when the polishing is combined with the addition of a finely ground powder of graphite.

Decoration
The decoration elements as well as the arrangements of the decoration vary from one village to another. Which type of pots that are to be decorated and which are to be plain may also vary. (Lindahl 1990b, 1991, p. 58; Huffman 1972, pp. 68). In general cooking pots are left undecorated while storage vessels get a rich
treatment of a pot is

urface is smoothed with left to dry until it surface is then polished bed (Fig. 11). Practi-
\[\text{depending on the time of } \]

rangement of the deco-
\[\text{Which type of pots that } \]

ge vessels get a rich
decoration around the upper part of the body, shoulder and neck. The most frequent decoration elements are incised lines in triangular and vertical panels as well as cross-hatching (Fig. 12a, b). The panels used to be coloured by means of red-ochre and graphite. In our modern time these traditional colours are often succeeded by oil-paints in bright red, blue, green, yellow etc. (Fig. 13).

Firing

The pots are left to dry in a shaded place for one or two days, thereafter they are kept in the sun for a few more days to become completely dry. They are then fired in an open fire in oxidized atmosphere either on the flat ground or in a shallow pit (Fig. 14).

Approximately ten vessels are fired on each occasion. The large ones are placed in the middle and the small ones around and on top. The fuel is stacked around the vessels. Owing to lack of fire-wood the most common fuel today is tree bark and cattle-dung.
Fig. 13. Today the graphite and red-ocre is often exchanged for oil paints in red, blue, green or yellow.

Fig. 14. The pots are fired on an open fire. In order to save firewood the potters use tree bark or cattle dung as fuel. Normally c. 10 vessels are fired at the same time. Each firing takes approximately 45 minutes.
red-ocre is often ex-
sen or yellow.

Fig. 15. a) After firing the vessels have a brick red surface, sometimes with grey or black patches. b) The core of the ware is still often dark grey or black indicating that the firing time was short and therefore the ware is not oxidized all the way through.

Both give an even and sufficiently high temperature to produce well-fired ceramics. The firings are carried out on calm days, preferably in the mornings. Windy weather causes rapid and uneven firing which may result in cracking of the pot. A firing normally takes about 40 minutes. After cooling the pots show a brick-red surface, sometimes with grey or black patches. However, the core of the ware is most often dark grey or black. This is not a sign of an inadequately fired ware, but merely points to the fact that the firing time was short and therefore the ware is not oxidized all the way through (Fig. 15a, b). After each firing the ground is cleaned from accidentally broken pots and ashes. There are no visible traces of the firing to be seen afterwards.

Vessel shapes

There are two basic vessel shapes:

1) Wide-rimmed pots with no neck or with a very short one (Fig. 16). These vessels are used for cooking, serving food or as
eating bowls. Their sizes vary, the cooking pots for the basic food are the largest ones, the eating bowls are much smaller. The size of a pot with the same function may vary between households. A big household naturally needs larger cooking-pots than a small one. The rim diameters are ranging from 15 to 25 cm and the heights from 15 to 35 cm. 2) Necked, narrow-rimmed vessels (Fig. 17). The large ones of this type are used for storing liquids and dried food. The small ones are used for carrying and serving liquids as well as for drinking. Depending on their function the rim diameters range from 10 to 30 cm and the height from 15 to 55 cm.

In Huffman's study of Shona pottery from Pumula township in Bulawayo a third basic vessel shape was noted "...a gourd-shaped pot, distinguished by a marked incurved neck and consequent small mouth" (Huffman 1972, p. 68). Furthermore, the majority of the pots in Pumula had flat bases (ibid.). The third vessel shape noted in Pumula and the general tendency to a flat base has not been observed in Buhera, nor in any village in northern and central Zimbabwe that has been visited within the framework of the

Fig. 16. Cooking vessel without neck.

Fig. 17. A necked narrow rimmed vessel. The size of the vessel depends largely on its function.
pots for the basic food much smaller. The size between households. A larger-pots than a small ing-pots than a small 15 to 25 cm and the v-rimmed vessels (Fig. for storing liquids and lying and serving liq. their function the rim height from 15 to 55

in Pumula township insted "...a gourd-shaped neck and consequent ermore, the majority of the third vessel shape to a flat base has not e in northern and cent. the framework of the

A necked narrow l vessel. The size of sel depends largely inction.

project "Traditional pottery manufacture in Zimbabwe" (Lindahl 1990a, 1990b).

The containers used for carrying water from the well were formerly pottery. Today the clay pots have been succeeded by large tin cans. To prevent the water from spilling in these straight containes the top is covered not by a lid but by small branches with leaves. When the water splashes it hits the leaves and drips back into the container.
Chapter 6

Potters, vessel function and shape analyses

In order to achieve a better understanding and thus interpretation of the pot sherds found in the refuse pits, five potters from surrounding villages were interviewed and their manufacture of pottery was studied. The different pots were measured, drawn and photographed and their names and functions were noted (Fig. 18–19).

Potter I

Erisina Dondo is an elderly woman at Homora village, in her own words born in “the year of the locust”. She is married and has four children (2 sons and 2 daughters). Her husband is a farmer and a part time carpenter making traditional items. She learned the craft by watching her mother potting and she also had dreamed of making pots. For this reason she decided to try this “career”. Erisina does not only make pots for her own use, but also for sale and in exchange for extra labour on the fields. She makes pots both on request and to keep in stock.

Erisina like the other potters in Buhera make both storage vessels and cooking vessels.

Ten of her household vessels were measured, four necked storage/serving/drinking vessels (height 20 to 44 cm) (Fig. 19). These vessels are all used for storing or serving beer. The largest one is a Gate which is used for storing beer after cooking. The next in size is a Makua used for storing and serving beer at parties. The two smaller are Chipfuko. They are used for drinking beer or water. There are six cooking/eating pots two with short neck (height 17 and 25 cm) and four without neck (height 10 to 35 cm) (Fig. 18). The larger of the necked pots is a Shangwa used for cooking sweet potatoes. The other is a Hadliana used for cooking relish. This specific pot is made as a copy of modern cast iron or
Fig. 18. Size variation and functions of cooking pots. a) relish (hadliana, gapu), children's porridge (chimbira), b) sadza (Shambakodzi), ground nuts (chishangwa), c) pumpkins, sweet potatoes, beans (shangwa) and sadza for many people (mbuhwa), d) beer-pot (gambe).

Fig. 19. Size variation and functions of storage-, serving- and drinking pots. a) drinking (chipfuko), b) storing dried food (shangwa), c) carrying water (chirongo), d) serving beer/water (makua, nyengo, pfuko), e) storing beer (gate).
Erisina explains the presence of a short neck on the cooking pots as a relatively late feature added to the potting tradition. The function is that you use the neck as a grip, thus making the warm pot easier to handle when you remove it from the fire.

The proportional analyses display a distinct difference between the vessel types above the maximum body diameter (Fig. 20–21). Below this point all of her vessels, regardless of size and function have almost identical shape proportions. The function in itself is mirrored above that point in the shape modes. Thus the storage/serving/drinking vessels have a narrow rim as compared to the necked cooking pots (Fig. 20). Vessels with no neck are grouped into three different modes: 1) pots for cooking beer, 2) pots for sadza, and 3) an eating bowl.

Fig. 20. Shape modes, vessels with neck, Potter I.

Fig. 21. Shape modes, vessels without neck, Potter I.
sadza and relish and 3) eating bowls (Fig. 21).

Potter II
Tamary at Magondo village, a neighbouring village of Homora, was born in the late 1940. She is married and her husband is a farmer. She has three sons and two daughters. Tamary learned potting by helping her aunt in collecting clay and watching her making pots. Her aunt also advised her to make her own pots so that she (Tamary) would not have to buy them. As in the case of Erisina Tamary makes pots not only for her own use but also for sale. She tries to build up a small stock but makes them on request as well.

14 of her pots were measured. Ten are storage/serving/drinking vessels varying in height from 24 to 53 cm. The four largest ones are Gate for storing beer after cooking. There are three Nyengero used for serving beer. One vessel has a dual function. Most of the time it is used as a Chirongo for carrying water from the well, but sometimes it may be used as a Nyengero. The two smallest necked vessels are Chipfuko used for drinking beer.

One of the four cooking vessels has a short neck (vessel height 30 cm). It is a Shangwa and used for cooking pumpkins. The largest of the cooking pots without neck (height 38 cm) is a Gambe, used for cooking beer. The other two are a Shambakodzi, for cooking sadza (height 17 cm) and a Hadliana for cooking relish (height 14 cm). All the storage/serving/vessels except one have the same proportions (Fig. 22). One of the large vessels for storing beer is proportionally much slimmer than the other storage pots. Since
adza and relish and eating bowls (Fig. 21).

Potter II
Amy at Magondo village, a neighbouring village of Homora, was born in the late 1940. She is married and her husband is a farmer. She has three sons and two daughters. Amy learned potting by helping her aunt in collecting clay and watching her to make her own pots so they can be used. As in the case of her own use but also for k but makes them on request.

Storage/serving/drinking cm. The four largest ones. There are three Nyengeri dual function. Most of the water from the well, but

The two smallest necked (vessel height 38 cm) is a Gambe, a Shambakodzi, for cooking relish (height except one have the same vessels for storing beer is other storage pots. Since all the other vessels of this type tend to follow a very strict idea of proportions it may be suggested that the aberrant one is not made by her hand. As in the case of the previous potter, the shape proportions of the pots with no neck totally correspond to the lower part of the necked vessels (Fig. 23). The one necked cooking pot, however, differ in its proportions above the vertical tangent point. The beer-cooking pot without neck clearly differs from the other vessels. The standard cooking pots and the pot for cooking beer display the same shape-mode pattern as those of potter I (Fig. 21).

Potter III
Esnath Mutema at Chipiro village is the first wife of Wilfred Mutema. She was born in 1950. Her husband is a farmer and part-time blacksmith as well as wood-carver. Esnath was advised to make pots in 1983 due to economic need (it was the second year of the severe drought which hit Zimbabwe for a decade). Even though her mother is a potter she did not receive the inspiration from her, but rather from Erisina Dondo (potter I) who is born in the Mutema family. She makes pots both for the household and for sale. She keeps a stock of pots but she also makes on request.

Twelve of her vessels were measured, eight storage/serving/drinking vessels varying in height from 21 to 40 cm and four cooking/eating pots, where-of two necked (height 16 and 43 cm) and two without neck (height 17 and 23 cm). The two largest necked vessels are Nyengeri for serving beer. The next in size are
two Shangwa used for storing dried food. The four smallest are Chip-fuko used for drinking beer/water. The large necked cooking pot is a Gate for cooking beer and the small one is a Hadliana for cooking relish. The two vessels without neck are Shambakodzi used for cooking sadza.

The same pattern in the shape modes as for the previous potters is repeated in Erisinas set of pottery utensils (Fig. 24-25). However, her necked cooking pots have a much wider body in proportion to the height than the other necked vessels. This is displayed in the proportion analyses in that the shape modes of the two vessel types diverge already at the tangent point.

Potter IV

Janet Mutema, second wife of Wilfred Mutema. She was born in 1952 and has two sons and four daughters. Janet started to make pots for the same reason as Esnath and was also inspired by her. She is also making pots both for the household and for sale.
Ten vessels were measured. The two storage/serving/drinking vessels (height 20 and 22 cm) are both Chipfuko for drinking beer/water. The remaining eight vessels are cooking pots of which five have a short neck. The largest one (height 42 cm) is a Gate for cooking beer. The next in size are a Chishangwa (height 20 cm) used for cooking ground nuts, two Hadliana (height 18 cm) for cooking relish and a Chimbira (height 15 cm) used for cooking children's porridge. There are three vessels without neck, a Shangwa (height 28 cm) used for cooking pumpkins and ground nuts and two Shambakodzi for sadza (height 15 and 18 cm).

The shape modes in the proportion analyses are very similar to the ones of potter I and II (Fig. 26-27). However, there is one necked cooking pot that stand out (Fig. 26). The proportions of this pot are very similar to the ones of Esnath Mutema (Fig. 24) and since they are working close to one another it is very likely that there has been some mixing of their kitchen ware.
The Mutema family belong to the Apostolic Faith and are not allowed to brew the strong 7 days type of beer. However, they do brew a mild 3 days version called *maheu*. This may explain the comparatively small number of pots associated with beer.

Potter V

Janet Murwisi at Maunze village is married and her husband is a farmer and carpenter. She was born in the 1930's and has one son and eight daughters. Her mother was a potter and she began copying her mother when she was making pots. Janet makes pots for household use and for sale, but she also keeps a number of vessels, mostly larger ones, which she rent or lend out to the other villagers when they are having a party.

Fourteen of her vessels were measured – three storage/serving/drinking vessels and eleven cooking/eating pots. The large serving vessel (height 29 cm) is a *Pfuko* and the smaller ones are *Chipfuko* (height 26 and 19 cm) for serving/drinking or only drinking. She has a wide variety of cooking pots, all with neck. One of them, a large *Chirongo* (height 33 cm) was originally made for carrying water but the function has changed into a usage for cooking ground nuts, maize and beans though Janet claims that it is occasionally still used for the original purpose (Fig. 28). She also has a large *Mbuhwa* used for cooking *sadza* for many people and a large *Shambakodzi* for *sadza* and beans. Further more she has five smaller *Shambakodzi* (height 17 to 20 cm) and three
The Mutema family belong to the Apostolic Faith and are not allowed to drink beer. However, they do brew a mild版本 called mageda. This may explain the comparatively small number of pots associated with beer.

Chapter V

Janet Murwisi at Mauzige was born in the 1930's. Her mother was a potter she was making pots for sale, but she also hired them out for a party.

1 - three storage-serving pots. The large d the smaller ones are drinking or drinking pots, all with necks. One was originally made for a usage for which Janet claims that it was originally made. She uses sadza for many people. Further more she has three

Gapu (height 14 to 17 cm). The latter vessel type is used for cooking relish.

As for all the other potters the cooking vessels and the storing vessels have different shape modes, especially above the maximum diameter. As mentioned previously Janet has a large variety of cooking pots of which all but two display a well defined conception of vessel proportions. The two pots that fall outside this homogenous and very narrow shape mode also differ from one another (Fig. 28). It is therefore most likely that these pots are not made by her.

Janet Murwisi is a member of the Zionist Church, which forbids their members to drink or brew beer. This explains why there are no beer pots in her household or among the pots she manufactures.

The analyses show the relationship between vessel shape/size and vessel function. It is also evident that each potter has her own concept of the proportions of a pot. The potter keeps the basic shape proportions regardless of the size of the pot (Huffman 1972, pp. 78). The specific use of a vessel depends on two factors: firstly the general function as a cooking or storage vessel and secondly the size of the pot. The method is therefore well suited to distinguish the productions of different potters within a collection of vessels of the same or similar function.
Fig. 29. Map of the investigation areas and surrounding features.
Chapter 7

The Mafemba's original homestead, descriptions and archaeological interpretations

The site had been abandoned for approximately 30 years at the time of the investigation. The vegetation had regained the territory and apart from founding stones for houses there was very little to be seen on the ground surface.

Topography

The homestead was situated on an isolated ridge about 200 m long (east–west) and 100 m wide (Fig. 29). It overlooks a stream to the west and good arable land to the north and south. The crest of the ridge is flat (100 m long and 30 m wide) and rises approximately 8 m above the surrounding landscape. It is gradually dipping (1.5 m) from west to east. This small plateau had been chosen for the location of a homestead. It had been cleared of most

Fig. 30. View of the Mafemba homestead on the ridge at the time of the investigation.
Fig. 31. Plan of the Mafemba homestead on the ridge.
I = settlement boundary, II = limit of former construction, III = limit of garbage area, IV = stone, V = accumulation of stones, VI = remains of dhaka, VII = tree, VIII = section of garbage area.
stones and trees. Vegetation on the rest of the ridge was apparently spared (Fig. 30).

Features of the site
The remains of 15 different building constructions were found on the ridge (Fig. 31) marked by stone bases and mounds of fallen dhaka plaster, sometimes with an outline of stones. There was little evidence for the use of wood (wall poles or floor logs) in connection with the buildings. Three of the foundations (no's 13–15) were quite small and were most probably remnants of houses used for keeping animals (Fig. 32). Eight other buildings had a square outline (houses no's 1, 2 and 4–9) and 4 were round (houses no's 3, 10–12).

In most cases the length of the sides of the square houses measure 3–3.5 m. All the square houses except two (no's 7 and 8) have sill stones in each corner as well as in the middle of each side.

ad on the ridge.

er construction, III = accumulation of stones, = section of garbage

Fig. 32. Stone structure, presumably used for keeping chickens.
and in the centre of the house (Fig. 33). They also have stepping stones on the middle of the side which is facing the centre of the homestead. House no 7 is slightly smaller than the others (2.5x2.5 m). The rear corner stones as well as the centre stone are missing. The remains of house no 8 consist of a low mound of soil and crumbled dhaka.

One of the round houses (no 11) had a ring of stones outlining the circumference of the wall (Fig. 34). An additional two (no's 10 and 12) had stepping stones indicating the location of the entrance. Apart from the stones the only visible trace of the house was a low mound of dhaka.

Other features were three middens, located on the northern side on the edge of the plateau (no's 16-18).

The excavation and the finds

Very few finds were found on the ground surface of the settlement area. Apart from one quern-stone behind house no 7 and a grinding stone in front of house no 10 the surface collection consisted of a handful of sherds of pottery and glass. A survey within the settlement displayed a cultural layer of only a few centimetres in thickness. The house floors located directly on the ground have been exposed to heavy rains and was totally eroded and without finds. For this reason the excavation was concentrated to the middens.

Midden I, situated on the north-eastern end of the homestead (no 16, Fig. 31), was approx. 4 m long and 2 m wide and a maximum depth of 25 cm (Fig. 35). Aside from the finds midden I contained a large number of stones, charcoal and ashes. The midden was surrounded by piles of stones which may have accumulated as a result of the clearing of the ridge.

Apart from pottery the finds consisted of animal bones, artefacts of rubber, plastic, iron and glass (Tab. 1). More noteworthy finds were parts of torch cells, writing slate and a number of different bicycle parts.
they also have stepping facing the centre of the than the others (2.5x2.5 metre stone are missing. low mound of soil and ring of stones outlining additional two (no's 10 the location of the visible trace of the house located on the northern surface of the settlement house no 7 and a grind-

ce collection consisted of a survey within the set-
y a few centimetres in only on the ground have tly eroded and without as concentrated to the

id of the homestead (no n wide and a maximum nds midden I contained shes. The midden was have accumulated as a animal bones, artefacts. More noteworthy finds d a number of different

Fig. 33. Square stone foundation for house 9.

Fig. 34. The circular stone foundation, of house 11.
Fig. 35. Section of midden I. I = Stone, II = Grey sandy soil with aches and charcoal, III = Ground surface.

<table>
<thead>
<tr>
<th>ARTEFACTS</th>
<th>No.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery</td>
<td>11</td>
<td>1 rim sherd and 10 body sherds.</td>
</tr>
<tr>
<td>Bones</td>
<td>17</td>
<td>3 skull bones, 4 ribs, 3 limbs, 6 others, 1 tooth incisors.</td>
</tr>
<tr>
<td>Rubber</td>
<td>2</td>
<td>1 piece perforated probably for secondary use, 1 from tube rubber.</td>
</tr>
<tr>
<td>Plastic</td>
<td>1</td>
<td>Strip 30 mm long with three rows of tiny knobs along one side.</td>
</tr>
<tr>
<td>Torch cell</td>
<td>4</td>
<td>1 part of shell, 1 metal cap (terminal) put on the carbon rod, 2 carbon rods one of which is complete.</td>
</tr>
<tr>
<td>Bicycle parts</td>
<td>8</td>
<td>1 saddle spring shock absorber, 1 axle; 3 spokes; 1 clip or clamp probably for electric wires; 1 component of the pedal axle cover; 1 bicycle pump valve.</td>
</tr>
<tr>
<td>Iron nails</td>
<td>4</td>
<td>1 length = 100 mm; 2 length = 40 mm; 1 broken.</td>
</tr>
<tr>
<td>Writing slate</td>
<td>1</td>
<td>Broken piece.</td>
</tr>
<tr>
<td>Glass</td>
<td>3</td>
<td>1 glass bottle neck; 2 parts of looking glass.</td>
</tr>
<tr>
<td>Porcelain</td>
<td>7</td>
<td>Sherds of cup (tea cup?).</td>
</tr>
<tr>
<td>Shell</td>
<td>2</td>
<td>1 complete snail shell (Achatana), 1 small piece of snail shell.</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>7</td>
<td>4 pieces of iron sheet, 3 pieces of wire.</td>
</tr>
</tbody>
</table>

Tab. 1. The contents of Midden I, at the Mafemba homestead on the ridge.
Midden II located c. 10 m west of midden I (no 17, Fig. 31), covered an area of 5 m x 2.5 m (Fig. 36). The midden is divided into two sections. One pit 2.5 m x 2.5 m with a maximum depth of 40 cm, which probably constitutes the primary stage of the midden. In connection with the pit and spreading 2.5 m down the slope was a 10 cm thick layer of ashes and charcoal with a sparse content of finds. This layer is most likely composed of wash-out from the pit.

The composition of finds was similar to that of midden I. However, the frequency varies to some extent. The amount of pot-sherds, for instance, was doubled (Tab. 2).

Midden III is situated on the western section of the ridge (no 18, Fig. 31). It is the largest of the three middens c. 6 m x 3 m. It has an even depth of 20 cm except for the northernmost part where it measures a depth of 30 cm (Fig. 37). Although the variety of finds was the same as in the other two, this midden was by far the richest regarding the number of finds (Tab. 3).
<table>
<thead>
<tr>
<th>ARTEFACTS</th>
<th>No OF DESCRIPTION ITEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery</td>
<td>24 rim sherds and 20 body sherds.</td>
</tr>
<tr>
<td>Bones</td>
<td>4 2 ribs, 1 limb, 1 fragment.</td>
</tr>
<tr>
<td>Rubber</td>
<td>53 Strips probably from tube rubber but not of bicycle, 1 part of shoe sole, 1 piece of bicycle tyre with tread markings.</td>
</tr>
<tr>
<td>Plastic</td>
<td>1 Piece, unidentifiable.</td>
</tr>
<tr>
<td>Torch cell</td>
<td>4 1 circular base of cell, 1 part of the cylindrical part of the shell, 2 pieces of the central carbon rods.</td>
</tr>
<tr>
<td>Bicycle parts</td>
<td>3 2 hind wheel axles (iron), one with the discs holding the spokes, 1 fork clamp supporting brakes.</td>
</tr>
<tr>
<td>Nails</td>
<td>3 Length: 100 mm, 80 mm, 35 mm.</td>
</tr>
<tr>
<td>Bottle tops</td>
<td>2</td>
</tr>
<tr>
<td>Iron ring</td>
<td>1 Diameter: 30 mm.</td>
</tr>
<tr>
<td>Sledge chain holder</td>
<td>1 135 mm X 10 mm thick, 40 mm maximum breadth.</td>
</tr>
<tr>
<td>Part of car door lock</td>
<td>1</td>
</tr>
<tr>
<td>Writing slate</td>
<td>4 Pieces</td>
</tr>
<tr>
<td>Glass</td>
<td>9 Broken pieces, 7 of glass bottle, 2 of looking glass.</td>
</tr>
<tr>
<td>Porcelain</td>
<td>1 Broken piece of a rim of a white plate decorated with a green line.</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>7 2 pieces of metal, flat and oblong, 5 iron sheets, broken and rusty.</td>
</tr>
</tbody>
</table>

Tab. 2. The contents of Midden II, at the Mafemba homestead on the ridge.
Body sherds, m tube rubber but not shoe sole, 1 piece of bi-markings.

2. 6 strips may be from tuber rubber, 3 from shoe sole.

Identical narrow strips 190 mm and 163 mm long.

3. Complete carbon rods, 2 broken rods, 1 part of shell, 1 circular base of shell.

5. Axles, three identical, hind wheel; two front wheel with nut; 2 metal rim elements of the saddle, i.e. the back rim and the pointed end of the saddle; 1 saddle clamp; 1 spring saddle shock absorber; 1 fork clamp supporting the brakes; 1 part of bell, the base; 1 lever supporting the brakes; 1 spokes washer; 1 quarter pin fixing the arm of the pedal; 6 iron rings, components to do with bicycle handle shaft and the hind wheel; 2 parts of wheel to do with the hub's brake system; 1 pressure valve lid; 1 spokes, 1 light holder.

6. Length: 150 mm, 3 = 75 mm, 65 mm, 55 mm, 60 mm, 40 mm, 10 mm. 2 were rusty, 1 was broken, 1 screw 35 mm, 2 broken screws, 1 needle 140 mm probably made of spokes.

Coca Cola type.

15 pieces of broken bottles; 1 piece of broken looking glass.

1 broken pair of scissors; 1 chisel 35 mm long; 1 part of iron container.

2 metal pieces, one of which is identical to the flat oblong one in midden 1; 23 pieces rusty iron sheet.

Tab. 3. The contents of Midden III, at the Mafemba homestead on the ridge.

57
Archaeological interpretation
A fair amount of literature is available on Shona ethnography dated from c. 1870. This and our knowledge about Shona contact with European settlers constituted the theoretical basis of our interpretations of the site (see Bourdillon 1987 for references).

Although Mafemba’s homestead was situated on a ridge 8 m above the surrounding country, it is by no means the highest spot of the area. There are taller hills within 2 km to the east and west, but this is a remarkable reminder of how 19th century Shona settlements were preferably situated on elevated locations for protection. Shona chiefdoms often fought each other. The security situation worsened when the Nguni invaded Mashonaland from South Africa. Left without the means of organised resistance the Shona relocated their villages on top of hills. These hideout villages were also used as bases for military resistance to European occupation in 1896-7. After the “pacification” of Mashona-
land, the settlers discouraged this type of settlement (Ranger 1968).

As matter of interest an attempt was made to isolate and seek the origins of the different cultural traits of the site. The four circular mounds of dhaka plaster had most likely been kitchen units. The kitchen is probably the most important house on a homestead as it serves as the living house and sometimes also as the sleeping room. The living house for Early and Later Iron Using Farming Communities was also circular. Seven of the eight square houses sat on an elevated foundation of stones. No similar structures have been observed from the early first millennium (so called Early Iron Age) to the 19th century AD (Phillipson 1977). The only square structures that bear any resemblance are the internal divisions of circular houses found at a number of zimbabwe ruins. The shape is likely to have been borrowed from European settlers.

The homestead with four kitchens probably constituted an extended family. Brothers tended to band together even when they got married, especially when the parents are still alive (Bourdillon 1987). Each kitchen then represented a household with husband and wife or in an extreme case it could be one husband and four wives. Assuming in the first case that each household had between 5 and 7 persons, between 20 and 28 individuals lived at the homestead. In the second case there could have been a few persons less.

As the table of finds shows the family had a fair access to modern industrially made goods. There was certainly at least one bicycle. Bicycle parts were by far the most numerous items of metal. The bicycle must have been an important means of transport and needed constant repair. The torch cells could have powered either a torch or a radio. Some members of the family were going to school, hence the broken pieces of writing slates. Glass, metal, porcelain and of course pottery utensils were among the household goods. There were a few bones representing at least cattle,
sheep/goats and some wild animals. Animal meat was certainly part of the diet but it is difficult to say whether it was abundant. One can visualise a family which would like to acquire modern household goods which are not easily accessible. Perhaps one member of the family had a paid employment in order to afford to occasionally buy some bottled fizzy drinks which is indicated by the bottle caps.

Pottery analyses
The registration displays a variety of cooking and storage vessels. The material (136 sherds) was grouped into a maximum of 38 different vessel units according to a macroscopic division based on the actual fitting together of sherds, vessel type, rim shape, colour, surface treatment, traces of use wear and type and amount of temper. However, open air firing of the pots often causes variations of the colour of the vessel surface, the use of the vessels may also result in great differences in the surface finish on different parts of the vessel, thus causing an overestimation of the total number of vessels. 14 of the vessel units represent cooking vessels and 24 storage vessels.

Approximately 1/4 of the vessel units are only represented by rim sherds or one rim and one body sherd. Almost half (16) of the vessel units are represented by only one sherd of which 5 are rim sherds. 8 vessel units are represented by 2 sherds, in 4 of these one of the sherds is a rim sherd. 6 vessel units are represented by 3 sherds and in one of these vessel units there is a rim sherd. Only 4 vessel units are represented by 10 or more sherds and one of them contain a rim sherd.

Sherd thickness distribution
Midden I contained too few sherds (11) to make a meaningful sherd thickness distribution.

Although very small (24 sherds), the total sherd material in Midden II display an even distribution of sherd thickness from 6
imal meat was certainly whether it was abundant or not. We like to acquire modern meat for our consumption and storage vessels. Cooking and storage vessels were typically made of clay and were often used for storing food and preserving it. The thickness of these vessels is important for their longevity and ability to withstand heat. A thickness of 6 to 10 mm with an average thickness of 8.6 mm (Fig. 38).

However, the picture is very different when the material is separated into two groups, blackened ware (cooking pots) and oxidized ware (storage vessels) (Fig. 39-40). The oxidized ware has an average thickness of 9.3 mm. The majority of the sherds have a thickness of more than 8 mm, with the largest number concentrated at 10 mm. The average thickness of the blackened ware is 7.6 mm, with an even distribution from 6 to 9 mm.

Midden III contained the largest number of sherds, 101. The sherd thickness distribution of the total material is closer to normal distribution than that of midden II. The average sherd thickness is 10.0 mm, but the diagram Fig. 41 disclose two possible populations. This is verified when the material is separated into blackened ware and oxidized ware. In the first case, the average thickness is 7.8 mm, with a concentration of the material around 7 and 8 mm (Fig. 42). The oxidized
ware have an average thickness of 9.6 mm and here the majority of the sherds fall within 9 to 11 mm in thickness (Fig. 43).

According to the analysis it is quite clear that the cooking pots represented by the blackened ware have thinner vessel walls than the storage, serving and drinking vessels, which are represented by the oxidized sherds.

Since there is a relation between wall thickness and vessel size, one may also deduce that the cooking pots have been smaller and their size range much more limited as compared to the vessels represented by the oxidized sherds. To be noted is the odd blackened sherds of 13 mm that may be the remains of a beer-cooking pot.

Rim diameter - vessel size - vessel function
One possible way to learn about the function of the vessels, from which the sherds, that have been thrown in the garbage origin, is to compare the rim diameters with the results of the shape analyses.
The sherd material comprises 12 rim sherds, 8 of blackened ware and 4 of oxidized ware (Tab. 4). The blackened sherds originate from cooking pots of which all have a rim that is turned slightly inwards. This rim profile indicates that these vessels had no neck. In the shape analyses above we find that the rim radius of cooking pots with no neck is between 50 and 60% of the vessel height.

The rim sherds of the oxidized drinking/serving/storing pots have a straight rim profile. In the ethnographic studies these vessel types have a rim radius that is approximately 25% of the vessel height.

Three of the cooking pots are rather small (estimated height 12–14 cm) and have most likely been used for cooking relish. The three next in size (estimated height 18–27 cm) fall within the range of vessels used for cooking sadza. The two largest cooking pots (estimated height 25–33 cm) are probably pots for cooking pumpkins, maize and other “bulky” foodstuff.
<table>
<thead>
<tr>
<th>cooking pots</th>
<th>drinking/serving/storing pots</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter (cm) radius (cm) vessel height (cm)</td>
<td>diameter (cm) radius (cm) vessel height (cm)</td>
</tr>
<tr>
<td>14 7 12 - 14</td>
<td>8.5 4.25 17</td>
</tr>
<tr>
<td>22 11 18 - 22</td>
<td>16 8 32</td>
</tr>
<tr>
<td>26 13 22 - 26</td>
<td>18 9 36</td>
</tr>
<tr>
<td>27 13.5 22 - 27</td>
<td>29 14.5 58</td>
</tr>
<tr>
<td>30 15 25 - 30</td>
<td></td>
</tr>
<tr>
<td>33 16.5 26 - 33</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4. The estimated vessel height based on the rim diameter of rim sherds from midden I–III, at the Mafemba homestead on the ridge.

The smallest of the necked vessels of an oxidized ware (estimated height 17 cm) is probably a small drinking pot. The pot with an estimated height of 32 cm may have been used for carrying water or serving beer. The next in size (estimated height 36 cm) fits well into the size of beer serving pots. The largest pot has an estimated height of 58 cm. A comparison with the ethnographic data indicate that storing beer has been the most likely function for this pot.

The results of the comparative studies of rim diameter and shape analyses are in accordance with the results of the sherd thickness distribution. The majority of cooking pots have a limited size variation whereas the drinking/serving/storing pots have a very wide size range.

Results of the petrographic microscopy
21 sherds were sampled for petrographic microscopy, 3 from midden I, 5 from midden II and 13 from midden III. The 21 test sherds originate from vessel wares of more or less the same mineralogical composition. They are all made of a non-calciferous, micaceous clay rich in iron oxides. The presence of
ing/storing pots

<table>
<thead>
<tr>
<th>Vessel Height (cm)</th>
<th>4.25</th>
<th>8</th>
<th>9</th>
<th>14.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (cm)</td>
<td>17</td>
<td>32</td>
<td>36</td>
<td>58</td>
</tr>
</tbody>
</table>

ed on the rim di-

32 oxidized ware (esti-
rinking pot. The pot
been used for carry-
(estimated height 36
s. The largest pot has
with the ethnographic
most likely function
of rim diameter and
results of the sherd
ug pots have a limited
/storing pots have a

microscopy, 3 from mid-

es of more or less the
all made of a none-
des. The presence of

phiboles, pyroxenes and olivine among the fine fractions is
abundant. Furthermore all samples contain to some degree zircon
as an accessory mineral and ore material. Quartz and different
types of feldspars constitute most of the coarse fractions.

<table>
<thead>
<tr>
<th>Ware-</th>
<th>Midden</th>
<th>Type of</th>
<th>MIPHO-</th>
<th>Sherd</th>
<th>Mean</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>group</td>
<td>sherd</td>
<td>group</td>
<td>thickness</td>
<td>max.</td>
<td>coarse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(mm)</td>
<td>grain</td>
<td>section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>size (mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0.1 mm</td>
<td>No</td>
</tr>
<tr>
<td>A</td>
<td>II</td>
<td>ox. body</td>
<td>I</td>
<td>10</td>
<td>2.1</td>
<td>22</td>
</tr>
<tr>
<td>A</td>
<td>II</td>
<td>bl. body</td>
<td>I</td>
<td>7</td>
<td>2.1</td>
<td>21</td>
</tr>
<tr>
<td>A</td>
<td>III</td>
<td>bl. body</td>
<td>I</td>
<td>7</td>
<td>2.0</td>
<td>21</td>
</tr>
<tr>
<td>A</td>
<td>III</td>
<td>bl. body</td>
<td>I</td>
<td>7</td>
<td>2.2</td>
<td>21</td>
</tr>
<tr>
<td>A</td>
<td>III</td>
<td>ox. body</td>
<td>I</td>
<td>10</td>
<td>2.3</td>
<td>22</td>
</tr>
<tr>
<td>A</td>
<td>III</td>
<td>ox. body</td>
<td>I</td>
<td>13</td>
<td>1.7</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>III</td>
<td>bl. rim</td>
<td>I</td>
<td>7</td>
<td>1.7</td>
<td>22</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>bl. body</td>
<td>I</td>
<td>9</td>
<td>2.0</td>
<td>22</td>
</tr>
<tr>
<td>B</td>
<td>III</td>
<td>bl. body</td>
<td>I</td>
<td>10</td>
<td>1.8</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>III</td>
<td>ox. body</td>
<td>I</td>
<td>9</td>
<td>1.7</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>III</td>
<td>ox. body</td>
<td>II</td>
<td>7</td>
<td>1.7</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>III</td>
<td>bl. body</td>
<td>II</td>
<td>8</td>
<td>2.0</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>III</td>
<td>ox. body</td>
<td>II</td>
<td>12</td>
<td>2.0</td>
<td>25</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
<td>bl. body</td>
<td>II</td>
<td>6</td>
<td>2.0</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
<td>ox. body</td>
<td>II</td>
<td>10</td>
<td>1.9</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>II</td>
<td>ox. body</td>
<td>III</td>
<td>10</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>E</td>
<td>II</td>
<td>bl. rim</td>
<td>III</td>
<td>6</td>
<td>1.7</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>II</td>
<td>bl. body</td>
<td>III</td>
<td>8</td>
<td>1.7</td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>III</td>
<td>ox. rim</td>
<td>III</td>
<td>9</td>
<td>2.5</td>
<td>28</td>
</tr>
<tr>
<td>E</td>
<td>III</td>
<td>ox. neck</td>
<td>III</td>
<td>7</td>
<td>1.6</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>III</td>
<td>ox. body</td>
<td>II</td>
<td>9</td>
<td>1.4</td>
<td>5</td>
</tr>
</tbody>
</table>

Tab. 5. The result of the petrographic microscopy. (Mean max. grain size is a calculation based on the five largest grains in the thin section, excluding the largest grain).
Fig. 44. MIPHO-group I, an unsorted medium fine clay. Sample no. 7. Microphoto X25 Crossed nicols.

All vessels have been manufactured out of naturally tempered clays. However, the manner of mixing clays of different grain size distribution, which is known from the ethnographic studies, may not be ruled out.

A coarse or fine clay is to be interpreted as a clay with a large or low amount of silt and/or...
vessels have been manufactured out of naturally tempered clays. In the manner of clays of different size distribution, as known from the petrographic studies, may be ruled out.arse or fine clay is interpreted as a clay of silt and/or sand. It should not be confused with the description of different grain sizes e.g. coarse silt or fine sand.

Based on the data obtained by the petrographic microscopy, grain size distribution and MIPHO classifications (see pp. 13) the sampled sherds are grouped into five ware-groups A–E. Each ware-group consists of two or more sherds. There are three single sherds i.e. sherds that have no similarity with any of the other sherds (Tab. 5).

Ware-group A (Tab. 5). The group consists of eight sherds (No’s 1, 6, 7, 8, 10, 14, 15 and 21) with a very similar composition. They belong to MIPHO-group I, an unsorted, medium fine clay (Fig. 44). In a more or less even distribution approximately 70% of the grains fall within the very fine to coarse sand fractions. The median grain size is 0.125 mm. Grains larger than c. 0.30 mm

![Fig. 46. MIPHO-group II, an unsorted fine clay. Sample no. 17. Microphoto X25. Crossed nicols.](image)
fall within the first quartile and in the fourth quartile grains smaller than c. 0.076 mm (Fig. 45). The mean max. grain size is calculated as between 1.7 and 2.3 mm. The amount of coarse fractions (grains > 0.1 mm) are estimated to between 20 and 22%.

Ware-group B *(Tab. 5)*. The group consists of two sherds (No's 13 and 16). They belong to MIPHO-group I, an unsorted, medium fine clay (see paragraph above and Fig. 44–45). The mean max. grain size is calculated to 1.7 and 1.8 mm. The amount of coarse fractions are in both samples estimated to 15%. Apart from the amount of coarse fraction this ware-group differs from ware-group A in its content of highly altered feldspar.

Ware-group C *(Tab. 5)*. Three sherds belong to this ware-group, No's 11, 12 and 17. They are comprised in MIPHO-group II, an unsorted fine clay. 70% of the grains fall within the coarse silt to medium sand fractions (Fig. 46). However the majority of the grains have a much more narrow distribution within the coarse silt and very fine sand fractions. The median grain size is 0.090 mm. The first quartile comprises grains larger than c. 0.20 mm and in the fourth quartile grains smaller than c.0.070 mm (Fig. 47). The mean max. grain sizes are calculated as between 1.7 and 2.0 mm. The amount of coarse fractions have been estimated to 25–28%.

Ware-group D *(Tab. 5)*. This group comprises two sherds (No's 19 and 20). They belong to MIPHO-group II, an unsorted fine clay (see paragraph above and Fig. 46–47). The mean max. grain sizes are calculated as 1.9 and 2.0 mm. The amount of coarse fractions are estimated to 15 and 16% respectively. The difference between ware-groups D and C is the various amount of coarse grains.

Ware-group E *(Tab. 5)*. The ware-group consists of three sherds (No's 2, 3 and 4). They belong to MIPHO-group III, a sorted, fine
quartile grains.

The amount of coarse fractions between 1.7 and 2.0 mm has been estimated to be 1.7%.

The mean max. grain size is 0.090 mm and the median is 0.080 mm. The first quartile comprises grains larger than c. 0.070 mm and in the fourth quartile grains smaller than c. 0.095 mm (Fig. 49). The mean max. grains are calculated as 1.7 mm.

To this ware-group, MIPHO-group II, an unsorted fine clay with few grains of the coarser sand fractions (Fig. 48). 70% of the grains are distributed within the coarse silt to very fine sand fractions. The median grain size is c. 0.080 mm. The first quartile comprises grains larger than c. 0.160 mm and in the fourth quartile grains smaller than c. 0.095 mm (Fig. 49).

Fig. 47. Grain size distribution for sherds in ware-group C (samples 11, 12 and 17) and D (samples 19 and 20).

q = quartile m = median

Fig. 48. MIPHO-group III, a sorted, fine clay with few grains of the coarse sand fractions. Sample 2. Microphoto X25. Crossed nicols.
and 1.8 mm. The amount of coarse fractions have been estimated to 16 and 17%. The difference to the other ware groups is the rich representation of medium and coarse silt and few grains of the sand fractions.

Single sherds. Sherd No 5 is made out of an coarse unsorted sandy clay. 70% of the grains fall within the very fine sand to coarse sand fractions. The median grain size is 0.150 mm. The first quartile comprise grains larger than 0.450 mm and in the fourth quartile grains smaller than 0.075 mm (Fig. 50). The mean max. grain size is calculated as 2.5 mm. The amount of coarse fractions have been estimated to 28%. The ware differ from all the others in its large
1.8 mm. The amount of coarse fractions have been estimated to 16 and 17%. The difference to the ware groups is rich representation of medium and few silts and few of the sands.

de sherds. Sherds is made out of an unsorted sandy 70% of the grains within the very fine to coarse sandions. The median size is 0.150 mm. first quartile comprise grains larger than 0.0 mm and in the third quartile grains larger than 0.075 mm. The mean max. grain size is calculated as 1.6 mm. The amount of coarse fractions has been estimated to 14%. It differs from ware-group E in its contents of microcline as the overall dominating feldspar mineral.

Sherd No 9 has a very similar composition as the sherds in ware-group E, a sorted, fine clay with few grains of the coarse sand fractions (Fig. 49). The mean max. grain size is calculated as 1.6 mm. The amount of coarse fractions has been estimated to 14%. It differs from ware-group E in its contents of microcline as the overall dominating feldspar mineral.

Sherd No 18 consists of a sorted, coarse clay. 80% of the grains fall within the very fine to fine sand fractions. The median grain size is 0.100 mm. The first quartile comprise grains larger than 0.180 mm and in the fourth quartile grains smaller than 0.06 mm (Fig. 51). The mean max. grain size is calculated as 1.4 mm. The amount of coarse fractions has been estimated to 5%. The sherd stand out from the other samples in its highly sorted material.

The conformity of the sherds within a ware-group is of a magnitude that makes it possible that they were made out of the same batch of clay or at least that the clay was quarried at the same location. The differences between ware-groups A, B, C and D, however significant, are not greater than that the clays may originate from different depths of the same clay sediment. This difference between clays at various depths in a clay sediment may be explained by the variation in sedimentation rate of the fluvial clay in the local rivers.
Ware-group E and the single sherds have a composition that distinctly differs from the other test sherds. The raw clays used to manufacture these pots have most likely been quarried elsewhere.

Dating
The table of finds show clearly the contact with modern industry which leaves no doubt that this was a 20th century settlement. Slate preceded paper which in the early days was scarce and expensive. We know that the first schools in Buhera were set up in the late 1920's and slate was used from then until the 1950's. We may therefore assume that the site was occupied for any length of time between 1930 and 1960.
Chapter 8

The Mafemba's homestead: Oral investigations of the life-history of the site

Our valuable informant, Mr Kurotwi Mafemba is one of nine children, seven sons and two daughters, of the old Mafemba, who lived at the investigated homestead. He could remember quite well the lay-out of the homestead and the functions of the several houses. The only date that he cited was 1947 as a year when the ridge was occupied.

The inhabitants

Kurotwi's parents were farmers depending on subsistence agriculture. Together his father and three married sons (including Kurotwi) kept a herd of cattle. The size of the herd fluctuated between fifteen and twenty-two individuals. They kept an unspecified number of goats and chicken but no sheep. Apart from the cattle the most valued possessions of the family were three bicycles.

Old Mafemba was a village policeman sitting with the headman as an assessor in village civil cases. The mother occasionally made pots, but only for the homestead.

Kurotwi says daily life on the ridge was not any different from life in neighbouring families. Three or four beer parties were held annually, especially in the dry season.

The homestead was designed for an extended family with four household units: Old Mafemba's, Rambiwa's (eldest son employed locally as store keeper), Davias' (second eldest) and Kurotwi's. At the most 16 people were living on the ridge. There were Old Mafemba and his wife, an unmarried daughter and four unmarried sons who were employed and rarely staying at home (7); Further on Rambiwa, his two wives and two children (5); and Davias, his wife and two children (4); and Kurotwi (who was also
employed), his wife and a child (3) constituted the rest of the family. Old Mafemba's elder daughter had married before they moved to the ridge.

The use of the buildings on the ridge (Fig. 31)
Kurotwi says there was no evidence of settlement on the ridge prior to their occupation.

1. Square house on stones. Davias' bedroom, built at the beginning of the settlement.
House 2. Square house on stones. Davias' granary, built at the beginning of the settlement.
House 4. Square house on stones, Kurotwi's bedroom and granary.
House 5. Square house on stones, Old Mafemba's granary, it was smaller than the others because their yield was lower due to age.
House 6. Square house on stones, Rambiwa's second wife's granary, it was built after 1955.
House 7. Square house on stones, Rambiwa's first wife's granary.
House 8. Square house, Rambiwa's bedroom. His two wives took turns to use the bedroom.
House 9. Square house on stones, Rambiwa's first bedroom. Later on he built another square house which became the bedroom. Our informant Kurotwi was not too sure what the previous bedroom was subsequently used for, but he says it probably became Rambiwa's own granary. A polygamist has to have his own bedroom, he said.
House 10. Round house, Rambiwa's wives' kitchen. Both wives used one and the same kitchen. This is unusual but Kurotwi explains that since the younger wife did not have children she
the rest of the fam-
d before they moved

Fig. 31)

31) mment on the ridge

1, built at the begin-

granary, built at the

it at the beginning

twi's bedroom and

femba's granary, it

tield was lower due

awa's second wife's

ibiwa's first wife's

om. His two wives

awa's first bedroom.
ich became the bed-
ure what the previ-
he says it probably
st has to have his

kitchen. Both wives
usual but Kurotwi
have children she

had to stay with the elder wife. At any rate she initially had to
stay either with the Mother (i.e. Rambiwa's mother) or the el-
der wife before she was initiated into her own household.

was the largest house because it was a worthy result of paid
labour.

House 12. Round house, Mother's kitchen (Old Mafembas
wife); built at the beginning of the settlement.

Other features (Fig. 31)

(a) Three chicken pens (13–15). The pens were moved from
time to time when the chickens had been invaded by fleas and
other pests.

(b) Three middens (16–18). Midden I was used by Davias' wife.
Midden II was used by Kurotwi's wife and his mother because
their kitchen were situated next to each other. Midden III was
used by Rambiwa's wives.

(c) Two cattle-pens about 10 m apart at the foot of the hill, used
one after the other.

(d) The dare (official meeting space) (19) was situated roughly
between Old Mafemba's kitchen and Kurotwi's kitchen. All
men in the homestead ate together at the dare, especially in
the evening. Women and children had separate meals together
in their kitchens.

(e) A tree (20) left roughly in the middle of the homestead, be-
tween Rambiwa's and Kurotwi's kitchen, served as a shade
where people rested especially in the hot season.

Economic activities
The nearest source of water was an intermittent tributary of Wa-
tekama River, two to three hundred metres away from the home-
stead (Fig. 29). This stream ran dry at the peak of the dry season,
whereby the women had to walk a little further to the Watekama
River. If this dried as well, which happened not so seldom in the
dry season, they would be saved by the Mwerahari River, 2.5 km to the south-west.

Each of the households had its own field. The fields were located on the surrounding planar land surface within a distance of two kilometres from the homestead. Some of them were actually situated below the ridge at a stone’s throw from the houses. The two most important implements were the ox-driven iron plough and the hoe (*badza*). The surrounding of the ridge are endowed with red-brown soils which at least today are reputed to be a very good medium for many crops. Pearl millet, finger millet, sorghum and ground nuts were the crops most often cultivated. Maize did not do well because of the relatively poor rains. Torches were used for nocturnal hunting of birds.

The abandonment of the ridge (Fig. 52)

The abandonment of the ridge was gradual and took place from just before 1959 when Old Mafemba moved to a point to the north of the ridge near his fields. The eldest brother (Rambiwa) moved out a little later also to his fields to the north. Both the old man and Rambiwa took poles and grass thatch from the old house for re-use as building material for new houses.

At this point a push factor set in. The colonial government embarked on a scheme of land classification and construction of contour ridges. The area around the ridge was designated for the fields and people were told to move south to the edge of Mwerahari River. All four households were then reunited 2 km to the south-east of the ridge in 1961.

From this point we leave the other households units and focus on Kurotwi’s. He married in 1955 and that is when he brought his wife to the ridge. Kurotwi was at this time working in Mutoko District and was only an occasional resident at the ridge like most of his brothers.
The fields were located within a distance of them were actually on the houses. The driven iron plough ridge are endowed reputed to be a very ger millet, sorghum cultivated. Maize did ins. Torches were

and took place from a point to the north r (Rambiwa) moved t. Both the old man m the old house for

ial government em­
construction of con­
designated for the the edge of Mwerahari united 2 km to the

olds units and focus when he brought his working in Mutoko the ridge like most

In 1967 Kurotwi moved away from the homestead at Mwerahari River and settled at a point c. 50 m to the south of his present homestead. Three years later he moved again to a spot to the north west of the present homestead and within 100 m. In 1973 it was finally shifted to its present location. Kurotwi and his wife say the cause of the constant shifting was that land development officers each time came back to revise the local land classification.

Nine people used to live at the present home (7 children and the parents).

As a whole the archaeological interpretation of the ridge settlement correspond to the oral investigation. There are of course
gaps in our interpretation of the site, but our interpretation as a farmstead for an extended family with four family units was correct. The finds in the garbage areas gave us a rough idea of the vessels used at the site, their sizes and their functions.

The finds also indicated some degree of schooling (the writing slate) and relative wealth (the bicycle parts and torch cells).
Chapter 9

The lay-out of Kurotwi's present homestead

Houses
1. Square house on stones. Granary with four compartments, which was one of the first to be built on the site (Fig. 53 and 54).
2. Square house made of brick. Serves as bedroom. The latest building at the homestead, built at the same time as the brick-kitchen (5) (Fig. 53 and 55).
3. Square house on stones; granary for maize and sorghum (Fig. 53 and 56).
4. Square house on stones; boys' sleeping house (Fig. 53 and 57).
5. Kitchen made of bricks (see 2). The girls also sleep in this kitchen (Fig. 53 and 58).

Fig. 53. Plan (a) and view (b) of Kurotwi Mafemba's present homestead. I = limit of construction, II = settlement boundary, III = stone, IV = pole.
Fig. 54. Building 1, a square house with raised floor and four compartments, which is used as a granary.

Fig. 55. Building 2, a square building made of bricks, which serves as a bedroom.
Three houses were built at the beginning of the settlement: No's 1 and 3 as well as a kitchen which was later destroyed. There was no more visible trace of this kitchen.

Other features
(a) Primary maize granary (Fig. 59).
(b) The outline of the homestead is marked by trees. They constitute a variety of three species which have been planted.
(c) There are two middens of which one is no longer in use. This one is situated on the leeward side of the homestead. The current middle is curiously placed in the direction from which the recurrent south-east trade winds blow.
(d) A chicken pen situated behind the kitchen (Fig. 60).
(e) Goats and calves pen. A square pen made out of bricks, and a circular pen for goat kids, made mostly of natural stones (Fig. 61).
Fig. 57. Square house with raised floor used as the boy’s sleeping house, building 4.

Fig. 58. A round kitchen made of bricks. It also serves as the girls sleeping house, building 5.
It also serves as

Fig. 59. Primary granary for maize.

Fig. 60. Chicken pen made of a car cab located behind building 5.
Fig. 61. Pens for goats and calves, located in the periphery of the homestead.

Fig. 62. A pole board to put utensils on after washing the dishes.
(f) A pole board to put utensils upon after they have been washed (Fig. 62).

(g) Source of water – Watekama Stream – only 200 m away from the homestead.

There were 13.5 clay pots in present use. Most of these were used as beer pots – preparing, storing, serving and drinking beer. A half pot now being used as a roasting pan had been part of a big pot which broke. There were seven metal pots used for cooking.
Chapter 10

Mukutukutu: Zizi's homestead

The investigated site is an abandoned homestead in the village of Mukutukutu (Fig. 29). It was chosen as a suitable comparative site since it has not only a well defined garbage area, but the outlines of the buildings were very clear and in some cases parts of the walls as well as the foundations were still standing (Lindahl et al. 1991). At first the relatives of the late Zizi had reservations about the excavation. The sifting through the debris of the deceased's homestead was interpreted as one further incident in a chain of "unfortunate events" concerning Zizi and the homestead. These events might be signs that the deceased has a grieved spirit and that perhaps some atonement must be done. With further discussion and clarification they gave their consent to the excavation.

Topography

The homestead was slightly elevated on the foot of a castle kopje. Apart from this hill, which is a dominating feature in the landscape, the surrounding area is flat with scattered trees. The inhabitants had easy access to the main road which makes a turn only a few hundred meters from the homestead.

Features on the site

At Mukutukutu the remains of 13 building constructions were clearly recognisable (Fig. 63). Of one building the better part of the supporting poles of the wall were still standing (building 2). However, the dhaka (daubing clay) was crumbled to the base of the wall (Fig. 64). Furthermore, the stone foundation and the pole construction of a primary granary, the founding stones and the flooring of two square houses (buildings 4, 1 and 5) were still intact (Fig. 65-66). In four more cases the founding stones were left
Fig. 63. Plan of Zizi's homestead in Mkutukutu. I. limit of former constructions, II limit of garbage area, III. dhaka pit, IV. tree, V. remains of dhaka wall, VI. stone, VII. wood.

in situ; two small buildings (building 3 and 8) (Fig. 67), one larger square house (building 9) (Fig. 68) and one building of an uncertain outline (building 11). Building 6 was a circular construction that had stepping stones towards the centre of the farmstead still in situ as well as remains of fired lumps of dhaka in the centre of the raised mound. The remains of buildings 7 and 10 consisted of a slightly raised mounds with circular outline. The larger constructions 12 and 13 were fenced in enclosures. Four pits dug in
ukutu. I. limit
age area, III.
all, VI. stone,

Fig. 67), one larger
ilding of an uncer-
cular construction
the farmstead still
ha in the centre of
and 10 consisted of
. The larger con-
s. Four pits dug in

Fig. 64. View of Zizi’s homestead from SE looking NW. Garbage area A is seen as a dark patch to the right of the standing remains of building 2, a kitchen house.

Fig. 65. View of Zizi’s homestead from E looking W. Standing next to building 5 is a delegation of villagers discussing the possible impact of the excavation on the spirits.
Fig. 66. Building 1 (to the left) a square house with found­ing stones and flooring still in situ. Building 4 (to the right), a pole construction of what presumably had been a primary granary.

Fig. 67. Building 8, a pile of stones most likely used as foundation for a small pen.
Fig. 68. Building 9, a square house with an outline of founding stones.

Fig. 69. Feature 14, four pits in the outskirts of the homestead. They are most likely used for quarrying dhaka.
the clayey ground (14) may have been used for quarrying dhaka, most likely for the construction of the houses (Fig. 69). Generally different kinds of clay are used for pottery manufacture and for daubing walls respectively.

Usually the garbage area or the garbage pit is located on the leeward side of the settlement. In Mukutukutu, however, a large garbage area was situated between building 2 and 5 (midden A). A small pit is located 4 m east of building no 3 (midden B).

Approximately 50 m south-west of the farmstead was a well with a lining of stones. In between the well and the houses was an area c. 10 x 5 m covered with charcoal and ashes.

Fig. 70. A 1x5 m trench in midden A. The midden contained a large amount of charcoal and ashes as well as pottery and other household items.
The excavation and the finds

A large quantity of pot sherds, pieces of glass and other waste were scattered on the ground of the farmstead. Under the floor of building 5 there were several pots which were partly broken.

<table>
<thead>
<tr>
<th>ARTEFACTS</th>
<th>No OF ITEMS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery</td>
<td>179</td>
<td>24 rim sherds and 155 body sherds.</td>
</tr>
<tr>
<td>Bones</td>
<td>79</td>
<td>74 bones; 5 teeth.</td>
</tr>
<tr>
<td>Leather</td>
<td>2</td>
<td>Small pieces.</td>
</tr>
<tr>
<td>Plastic</td>
<td>2</td>
<td>1 piece of a sack; 1 bottom of a milk bottle.</td>
</tr>
<tr>
<td>Metal</td>
<td>13</td>
<td>1 whole tin can, 12 small pieces of tin can.</td>
</tr>
<tr>
<td>Bottle tops</td>
<td>1</td>
<td>Coca Cola type</td>
</tr>
<tr>
<td>Glass</td>
<td>2</td>
<td>1 rim of bottle; 1 bottom of bottle.</td>
</tr>
<tr>
<td>Material</td>
<td>8</td>
<td>Pieces of fabric.</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>Pieces of aluminium tea packages.</td>
</tr>
</tbody>
</table>

Tab. 6. The contents of midden A, level 0-10 cm, Zizi’s homestead in Mukutukutu.

Furthermore, seven grinding stones were found within the settlement area.

Midden A has an oval shape 8.5x4.5 m and a depth of 20 cm. A trench 5x1 m in size was excavated in layers of 10 cm (Fig. 70). The soil in the midden contained a lot of charcoal and ash throughout the deposit. The finds constituted a mixture of broken everyday household items, such as pottery, glass, plastic, nails and scrap metal etc. (Tab. 6-7).

Midden B was a pit 1.8x1.5 m and 0.5 m deep (Fig. 71). The eastern half of the pit was excavated to the bottom. The pit contained a lot of charcoal and ash and was covered with peanut shells (Tab. 8).

The large area with charcoal and ashes between the houses and the well had a depth of only a few centimetres and it contained no finds.
<table>
<thead>
<tr>
<th>ARTEFACTS</th>
<th>No OF ITEMS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery</td>
<td>86</td>
<td>12 rim sherds and 74 body sherds.</td>
</tr>
<tr>
<td>Bones</td>
<td>39</td>
<td>36 bones; 3 teeth.</td>
</tr>
<tr>
<td>Plastic</td>
<td>1</td>
<td>Piece of burnt plastic.</td>
</tr>
<tr>
<td>Metal</td>
<td>1</td>
<td>Piece of scrap metal.</td>
</tr>
<tr>
<td>Material</td>
<td>1</td>
<td>Piece of fabric.</td>
</tr>
<tr>
<td>Nail</td>
<td>1</td>
<td>Iron nail</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Pieces of aluminium tea packages.</td>
</tr>
</tbody>
</table>

Tab 7. The contents of midden A, level 10–20 cm, Zizi’s homestead in Mukutukutu.

<table>
<thead>
<tr>
<th>ARTEFACTS</th>
<th>No OF ITEMS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pottery</td>
<td>3</td>
<td>2 sherds belonging to the same vessel.</td>
</tr>
<tr>
<td>Bones</td>
<td>3</td>
<td>undefined</td>
</tr>
<tr>
<td>Plastic</td>
<td>2</td>
<td>1 bag for seed maize, 1 bag for white sugar.</td>
</tr>
<tr>
<td>Bottle caps</td>
<td>3</td>
<td>2 Coca Cola type, 1 for olive oil.</td>
</tr>
<tr>
<td>Metal</td>
<td>1</td>
<td>Corroded tin-can.</td>
</tr>
<tr>
<td>Material</td>
<td>2</td>
<td>Pieces of fabric.</td>
</tr>
<tr>
<td>Nail</td>
<td>1</td>
<td>Iron nail</td>
</tr>
<tr>
<td>Rubber</td>
<td>1</td>
<td>Slipper sole</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>Pieces of aluminium tea packages.</td>
</tr>
</tbody>
</table>

Tab 8. The contents of midden B, Zizi’s homestead in Mukutukutu.

Archaeological interpretation
One of the circular houses (building 2) was very well preserved, with standing wall poles and part of the daubing clay still intact as well as fired daub in the centre. In another circular house (building 6) the hearth construction was in good condition, which indicates that the time gap since abandonment had not been very long. Both houses have with no doubt been used as kitchens, as
ag for white sugar.

packages.

-20 cm, Zizi's same vessel.

packages.

homestead in well preserved, clay still intact.

er circular house condition, which had not been very used as kitchens, as

both the lay-out of the constructions and the remains of hearths indicate.

Two other circular house foundations (buildings 7 and 10) may also be the remains of kitchens.

The small, more or less square, stone settings (buildings 3 and 8) have most likely served as chicken pens. The founding stones with and without flooring of the large square houses (buildings 1, 5 and 9) may have been used as the bases for secondary granaries. The construction supported by the founding stones of building 11 may be interpreted as having the same function as building 4, a primary granary.

The immediate archaeological interpretation of the site with those numerous buildings, of which at least two kitchens appear to have been of contemporary use, was that the homestead was inhabited by an extended family of at least two households. This means that approximately 10–14 persons may have lived on the site.

Fig. 71. Midden B, a small garbage pit with charcoal and ashes together with a few fragments of household items.
As is illustrated by the finds, for example the bag of seed maize and the grinding stones, the people living on the homestead had an agrarian lifestyle. Finds such as the bottle tops, aluminium tea packages and the piece of a milk bottle, show that there also has been some influence of the modern industrialised society.

The large area with charcoal and ashes between the well and the houses has obviously been used for some kind of fire, possibly a continuos use for the firing of pottery.

Pottery analyses
The sherd material from Mukutukutu has not been sampled for petrographic microscopy, nor has it been scrutinised to the same extent as have the sherd assemblage from the Mafemba ridge settlement. A total of 268 pot sherds were found in the garbage areas. However, it should be noted that only part of the garbage areas were excavated (5m² out of c. 35m²).

The material display a variety of cooking, storage and serving vessels in similar manner as in the Mafemba homestead. To be noted is that only two sherds were decorated.

The sherd thickness distribution of the total pottery material show a dip at the thickness 9 mm, indicating the presence of at least two different vessel types (Fig. 72).

The sherd fragmentation distribution shows very few sherds with a weight less than 3 grams (Fig. 73). The majority of the sherds fall within the three weight groups 3-6,
the bag of seed maize in the homestead had tops, aluminium tea that there also has used society.

between the well and kind of fire, possibly not been sampled for rutinised to the same Mafemba ridge set in the garbage ar part of the garbage g, storage and serving homestead. To be

6-9 and 9>12 grams, each containing 20% of the material. An additional 20% has a weight between 12 and 24 grams.

Oral investigation
An interview with the head-man of the area proved that the impressions derived at by purely archaeological methods was not altogether correct. In the most basic interpretation of the site, i.e. how the settlement was occupied, the conclusions were absolutely wrong. Instead of a large family, living at the place, the site had been occupied twice. The first time from the end of the 1960s until 1986. For the better part of that time span only one man, his wife and one child lived there. The child, a nephew (sister's son), looked after the animals. When Zizi himself died in 1986 his wife was too old to manage the farm on her own and had to leave the homestead and the site was abandoned. In 1987 a distant relative (nevertheless kin in an extended family) moved to the site. He built his own houses but he occupied Zizi's fields. The occupation of Zizi's fields in particular caused a serious rift between the new resident and Zizi's close relatives, causing the revived homestead to be abandoned again in 1989. Thus the explanation for the numerous buildings and the peculiar location of garbage area A becomes apparent. The first inhabitants of the site used buildings 5-11, cattle pen 13 and garbage area A. However, all the buildings of this first occupation were not used at the same time. The granary building 5 most likely succeeded granary no 10 and the kitchen number 6 may have a precursor in buildings no 7 or 10.
The second settlers constructed and used buildings 1–4 as well as cattle pen 12 and garbage pit B.

The grinding stones had basically been used to grind different kinds of grain for the making of home brewed beer.

The area with charcoal and ashes between the well and the houses was a result of a relatively short but intense work. The second inhabitant of the homestead decided to make the well deeper and kept a big fire for the making, repairing and sharpening of the tools needed for that job.
gs 1-4 as well as
do grind different
r.
he well and the
tense work. The
 make the well
ing and sharpen-

Chapter 11

Discussions and concluding remarks

Migration
One of the problems which an archaeological excavation is set to solve is to work out the sequence of occupation of a residential site (for example) and if possible to assess the relative length of each period of occupation. The two cases described above can give us a general picture on the life history of a Shona settlement.

Mafemba has an interesting history of shifting homesteads (Tab. 9). There is an obvious migratory tendency. The longest period of stay at one place before 1974 was 13 years. Between 1959 and 1973 the homestead was moved 4 times. Thus on average a homestead was abandoned after 4 years of occupation. Migrations usually are triggered by problems at one location and the prospect of better opportunities at the proposed destination. In this case all destinations were within 3 km from the ridge. This only creates problems for the archaeologist. As mentioned earlier the informant showed us a previous site of his homestead which was

<table>
<thead>
<tr>
<th>From - To</th>
<th>No of persons</th>
<th>Distance from ridge (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mafemba Family (ridge)</td>
<td>1947 - 1958</td>
<td>13</td>
</tr>
<tr>
<td>Old Mafemba (fields)</td>
<td>1958 - 1961</td>
<td>2</td>
</tr>
<tr>
<td>Kurotwi</td>
<td>1959 - 1967</td>
<td>8</td>
</tr>
<tr>
<td>Kurotwi</td>
<td>1967 - 1971</td>
<td>9</td>
</tr>
<tr>
<td>Kurotwi</td>
<td>1971 - 1973</td>
<td>9</td>
</tr>
<tr>
<td>Kurotwi</td>
<td>1973 - present</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab. 9. The migration of the Mafemba family, with special emphasis of Kurotwi Mafemba. The table illustrates the duration of a settlement as well as number of inhabitants and distance from the ridge settlement.
occupied for three years. One could hardly see any traces of occupation. The second problem is that in the absence of any significant cultural change all 5 locations mentioned above are likely to be treated as contemporary sites and present a misleading picture about settlement density. Today Mafemba does not have much freedom in to shift his homestead as he had 20 years ago. One is tempted to think that since there was little pressure on the land as population was far smaller than now, the life span of a homestead was much shorter. But as the case of Zizi shows a new family can settle on an old farmstead. This can lead us to think that most archaeological sites with dense occupation deposits may have been accumulated from numerous cases of short periods of occupation by people practising the same life style. In fact it is only possible to recognise an intrusion into a settlement by a new group if the former and new-comers practised significantly different lifestyles.

A farmer would build more houses to meet the needs of an increasing population as when old Mafemba's sons married. In both occupations at Mukutukutu the family consisting of three members was too small to justify the number of housing units they built. In Zizi's case he did not actually have a child but a nephew in his custody. It is likely that certain units were built to fulfil a stereotype image of a homestead. In this way they reflect more than just the need to provide accommodation and demonstrate a search for legitimate recognition.

Square houses with a raised floor, usually serve as granaries and sometimes with a joined function as sleeping house. Round houses are traditionally used as kitchens. Only in rare cases kitchens with a square outline occur. Among the remains of houses on the ridge one such case may be found in house no 8.
What happens to a ceramic vessel when it is broken?

In archaeological materials from garbage pits and cultural layers at settlements it is very rare to find enough sherds from the same vessel to make reconstruction's of whole pots. There may be several thousands of sherds among the finds but only one or two vessels may be reconstructed. Out of the remaining sherds the vessels are represented by single sherds or two, three sometimes up to ten sherds joined together. Very often the single sherds are part of rims with distinct profile and sometimes a decoration that should make it easy to find other sherds with corresponding features.

Why is this so? What happens to a ceramic vessel when it is broken? There are a number of possible factors that may affect sherds of a ceramic ware and make them disintegrate or disappear from the site:

1) A poorly fired ware deposited in a wet environment,
2) different kinds of acids e.g. phosphoric acid,
3) an accumulation of salt,
4) material in the plough level may be scattered over a large area owing to cultivation,
5) methods of excavation e.g. only a part of the site is investigated, the use of power shovels and other machines to remove the soil
6) a high level of mechanical fragmentation caused by people and animals,
7) reuse of large sherds that may be removed from the site when people are moving (Vogel 1993, pp. 405).

Since it is very common to find only a few small sherds from each of numerous vessels in our archaeological context it is important that we find reasonable explanations to this problem.

Vessels buried as grave gifts or bone containers in burial sites are in most cases more or less intact (not counting the upper part of the vessels that may be cut off through present day cultivation). These vessels are manufactured in the same manner as the household goods, in fact in some periods these grave urns are household vessels that are being reused. The suggested explanations 1, 2 and
3 listed above are therefore not to be considered as the most common explanations to this problem.

The Mafemba homestead and its surroundings were thoroughly surveyed and no trace of sherds could be found on the surface not to mention damaged or whole vessels. The garbage areas were excavated with trowels and every single pot-sherd was collected. It therefore came as much of a surprise when the ceramic finds had been processed that we did not have one single reconstructable vessel but 136 sherds that originated from no less than c. 35 different pots. Moreover the sherds had been deposited in the ground for only a few decades and have not been exposed long enough to any kind of acids etc. that might have had a disintegrating effect on the ware. As a result of this investigation we may assume that the explanations 4 and 5 above are less dominating factors to explain the lack of reconstructable pots. That leaves us with explanations 6 and 7 as the most probable causes to our difficulty to find an adequate number of sherds for shape reconstructions.

To correctly interpret data from garbage (and not get garbage data) we also have to consider the conditions of garbage disposal. Let us therefore try to picture how a vessel may be broken and how it is treated thereafter. The part most exposed to damage of a vessel is the rim. Pieces of various sizes may be broken off the rim but the vessel can still be used for its original function (Fig. 74). "About 70% of all daily-use cooking vessels in the village Guinaang (Philippines) have chipped rims. They vary widely in size and shape, but most appear to have been formed by single impacts" (Skibo 1992, p. 129). "The rims of cooking vessels are most often chipped while the pots are carried or moved within the house or transported to the washing spots. Impacts to the rim were most often observed while the pots were being picked up; contacts was made with other pots or with shelves or items in the house." (Skibo 1992, p. 130). Sometimes the damaged part is mended with for instance a piece of metal, which can also be found on pots from prehistoric time in Scandinavia (Fig. 75) (Henriksen 1992, p. 157;
as the most complete were thoroughly excavated. Geographical areas were excluded and collected. It was therefore concluded that the ceramic finds had been reconstructible, less than c. 35 different in the ground, and long enough to last. Integrating effect may assume that the location of factors to explain our difficulty to find vessels in the ground. Ceramic finds have been subjected to a generally large number of single rim sherds (rim sherds that can not be associated to any other sherd) among the finds.

When a vessel drops, the area closest to the point of impact will normally be the most fragmented. The sherds from the broken vessel vary in size from less than 1 cm² and - depending on the size of the vessel - up to several hundred cm². As an average 10-20% of the vessel surface is fragmented into sherds less than 70 cm² in size.

As mentioned above the most frequent form of maintenance of a Buhera homestead is sweeping, using a straw broom to gather the refuse and collecting it on a flat cardboard, a piece of flat wood or a piece of metal that will serve the function of a dust-pan. Thereafter it is carried to the garbage area and disposed of. Only small sherds that is missed during sweeping will be trampled into the ground of the living area. Naturally this is more likely to}

Fig. 74. Partly broken vessels are still in use.

Willemark 1989, pp. 112). The pieces that are broken off are picked up and thrown in the garbage, thus an explanation to the comparatively large number of single rim sherds (rim sherds that can not be associated to any other sherd) among the finds.

When a vessel drops, the area closest to the point of impact will normally be the most fragmented. The sherds from the broken vessel vary in size from less than 1 cm² and - depending on the size of the vessel - up to several hundred cm². As an average 10-20% of the vessel surface is fragmented into sherds less than 70 cm² in size.

As mentioned above the most frequent form of maintenance of a Buhera homestead is sweeping, using a straw broom to gather the refuse and collecting it on a flat cardboard, a piece of flat wood or a piece of metal that will serve the function of a dust-pan. Thereafter it is carried to the garbage area and disposed of. Only small sherds that is missed during sweeping will be trampled into the ground of the living area. Naturally this is more likely to
Fig. 75a, b. Prehistoric vessels from Scandinavia. The rim of the vessels was broken and mended by means of a sheet of metal. a) Iron Age vessel from Ringe Sø, Denmark (Courtesy: Henriksen 1992, p. 159). b) Iron Age asbestos Ware from Ödingen, Sweden (Courtesy: Willemark 1989, p. 113).

happen during the rainy season when the ground is soft and muddy.

The transformation of the sherds will not halt just because they are deposited in the garbage area. This area is frequently visited by cattle, sheep, goats, dogs, chickens etc., that most likely will cause further fragmentation of the sherds (Fig. 76). The animals may also remove sherds from the garbage e.g. a dog that has found a sherd with a delicious taste will probably take his loot to
Fig. 76. Modern garbage pit with chickens and goats looking for a meal.

...ound is soft and just because they frequently visited most likely will 76). The animals, a dog that has ... take his loot to...
Fig. 77. The pots are stored under a granary for future use. This is a living example of provisional discard.

storage of damaged or fragmented items for future disposal or re-use" (Deal 1985, p. 253). We can observe provisional discard of pottery in practically every homestead in Buhera. They are not so much stored along the walls of buildings as under the raised floors of granaries (Fig. 77). It is not only broken vessels that are stored in this way but also complete ones which are not used in the everyday household work. This out of the way location under a granary is most suitable since the pots are well protected from further damage by dogs, goats etc. Children, however, may cause problems since it is also an ideal place to hide under granaries when playing, thus rough play may result in the breakage of pots. The children may also remove pots and large sherds when they play house-keeping games.

From sherds to vessel types
As mentioned above the sherds from the garbage areas were heavily fragmented and very few sherds originated from one and the
...for future

...disposal or re-

...ional discard of

...They are not so

...raised floors

...that are stored

...in the every

...under a granary

...ed from further

...granaries when

...age of pots. The

...when they play

...reasons were heav-

...om one and the

...same vessel. Thus, unfortunately, it was not possible to carry out

...a proper shape analyses on this material. However, if we use the

...rim diameter in order to estimate the vessel height we will arrive

...at a highly plausible distribution of vessel types. In the sherd ma-

...terial from the Mafemba's homestead the diameter of 12 rim

...sherd could be determined of which 8 emanate from cooking pots

...(blackened sherds) and 4 from drinking/serving/storing vessels

...(oxidized sherds) (Tab. 4). The over-representation of rim sherds

...from cooking pots among the archaeological finds as compared to

...the ethnographic data may be explained by a more frequent day

...to day use of cooking pots over drinking/serving/storing pots, thus

...increasing the chance of accidental breakage of the rim. The sizes

...of the vessels correspond very well with the present day pottery

...assemblages in Buhera. This indicate that the three smaller cook-

...ing pots have been used for cooking relish, the three middle-sized

...ones for cooking sadza and the two larger ones for cooking pump-

...kins, maize, sweet potatoes etc. Among the oxidized rim sherds,

...the one with the smallest diameter may originate from a drinking

...vessel. The two middle-sized vessels may have been used for car-

...rying water or serving beer and the largest pot has most likely

...been used for storing beer.

...The sherd thickness distribution of pottery found in an ar-

...chaeological context reflects to some extent the homogeneity of a

...vessel assemblage. The various peaks in the diagram usually rep-

...resent different types of vessels (Fig. 41). One reaches a better un-

...derstanding of the archaeological findings if they are to be

...compared with locally, traditionally made pottery of today. In both

...groups of pottery we find that cooking pots in general have thin-

...ner vessel walls than storage and serving vessels. Furthermore,

...the wall thickness is related to vessel size - small vessels have

...thin walls and large vessels have thick walls. The ethnographic

...study shows that ordinary cooking pots fall within a very limited

...size range (height 14–30 cm), whereas drinking, serving and stor-

...age pots have a much wider size range (height 19–53 cm) (Fig.
18–19). Pots for cooking beer are much larger than pots for cooking food and during the last decades the traditional clay pots for this purpose have to a large extent have been exchanged for tin-drums. If we “translate” the result of the sherd thickness distribution of the pottery from old Mafemba’s and Zizi’s farmsteads into vessel size, we find that the blackened ware have a very limited size range. However, there is a “jump” in the sherd thickness distribution to a few sherds of a thicker ware, which most likely represent the beer-cooking pots. The oxidised ware on the other hand have a much wider range of vessel sizes (Fig. 42–43).

The results of the two types of investigation show good conformity, and one may therefore safely assume that the pottery inventory of the two investigated sites is of the same type as in Buhera today.

Furthermore the use of the same or a very similar clay for the manufacture of various vessel types which is indicated by the petrographic microscopy on the sampled sherds from the excavations is largely confirmed by the interviews with the potters. As long as the clay from the individual potter’s quarry works well in the forming process and in the functional aspects, there has been no need to use different clays for different vessel types. On the contrary, the potters are very conservative in their choice of raw material and do not want to change clay source if it is not absolutely necessary.

Abandonment of a site
The occurrence and distribution of pot-sherds and other waste material at the Mafemba settlement on the hill should be viewed and evaluated in comparison with what was found at Zizi’s homestead. The finds from the garbage areas show the same pattern. However, the two sites are very different when it comes to surface finds. At Zizi’s homestead wall poles and flooring of several houses were still in situ. Furthermore there were numerous sherds of pottery and glass as well as other waste scattered on the ground.
an pots for cooke-
nal clay pots for
changed for thin-
ickness distribu-

farmsteads into

e a very limited
rd thickness dis-
most likely rep-
the other hand

low good confor-
me pottery inven-
pe as in Buhera

imilar clay for the
ated by the pe-
the excavations

tters. As long as
ks well in the
ere has been no
es. On the con-
voice of raw ma-
is not absolutely

and other waste
ould be viewed
at Zizi's home-
me same pattern.
omes to surface
several houses
erous sherds of
on the ground

Fig. 78. Sherds of pottery, glass and pieces of metal scattered on the ground.

surface and a number of whole or partly damaged vessels stacked under the remains of the floor of granaries (Fig. 78 and 79). Most likely these differences do not so much illustrate various behaviour towards garbage disposal as a difference in the abandonment of the two sites.

The two sites are a good illustration to the fact that the manner in which a settlement is abandoned is of great importance when its remains are to be interpreted. A gradual abandonment, for instance, where the settlers make repeated returns to the site in order to collect household goods, building material etc. leave very little surface material to be found. This is what happened when the inhabitants moved out from Old Mafemba's homestead on the ridge. In these events their garbage areas may be the only available source of information.

If the abandonment is abrupt, for instance caused by an enemy attack, a fire etc., more or less everything is left behind on the
Fig. 79. Broken pots are left under the floor of an abandoned granary.

site. Sometimes the inhabitants may return to search the rubble, but most often only to get their valuables. In the case of Zizi's homestead the abandonment was not so violent but nevertheless abrupt. The first occupation ended when Zizi died and his wife moved to be looked after by her relatives. Here no one had any interest to gather and take care of her used and partly damaged utensils. The second occupation lasted for less than two years, and except for the constructions 1–4 and the small garbage pit B, and the area with ashes and charcoal in-between the settlement and the well, nothing else can be associated with this occupation. One must therefore assume that everything else was removed at the time of abandonment.

A number of valuable information has been derived at from the investigations in Buhera. For instance the difficulty in estimating the number of people living on these types of settlements is
of an abandoned settlement and his wife's hut nevertheless remained undamaged in two years, and rubbish pit B, and the settlement and its occupation. One of the experiences gained from the investigation is the difficulty in estimating the size of settlements is evident since the basic set-up for a household unit is (may be) the same regardless if the family consists of two or ten members.

Another experience this investigation has given us is how to evaluate waste in a garbage dump, e.g. number of pots and other items used at the site, vessel function etc. Furthermore, the search for evidence for how the settlement was abandoned must be seen as crucial in an archaeological investigation in order to reach a meaningful interpretation of a site.

When one enters the rural areas of Zimbabwe, like Buhera District, it is easy for someone used to a European lifestyle to imagine that you are not only travelling in space but also in time. The area seem to have the potential for limitless ethnoarchaeological studies. But we always have to bear in mind that this is not Iron Age Europe this is late 20th century Africa. This area has been exposed to great social and environmental changes (population increase, wild game decrease, clearing of land, erosion etc.) during the last century and not least during the last decades. When we interpret the data derived at by ethnoarchaeological studies we have to take these facts into consideration. This does not mean that ethnoarchaeological studies can not be used as guidelines for the interpretation of archaeological problems and hypothesis. On the contrary, we may use them as long as we are aware of their limitations. We have gained a great deal if they give us impulses and concrete suggestions to alternative models of interpretation.
References

