Innocent Pikirayi

THE ARCHAEOLOGICAL IDENTITY OF THE MUTAPA STATE

Towards an historical archaeology of northern Zimbabwe
The Archaeological Identity of the Mutapa State
The Archaeological Identity of the Mutapa State

Towards an historical archaeology of northern Zimbabwe

by

INNOCENT PIKIRAYI

Societas Archaeologica Upsaliensis. Uppsaia 1993
ABSTRACT

This thesis examines the archaeological evidence of the Mutapa state first established on the northern edge of the Zimbabwe plateau before the state moved to the Zambezi valley. Emphasis is placed on the historical period from the late 15th century to the present.

The main focus is the area to the east of Mt Fura, about 170 km north-north east of Harare. This area is known once to have been the seat of the Mutapa state. Field survey and excavated data are combined with selected documentary evidence to account for the range and variability of archaeological sites dating to the historical period. The development and decline of the Mutapa state is discussed in the context of current theoretical trends in socio-political complexity and collapse of societies.

The Great Zimbabwe tradition settlements continued in northern Zimbabwe during the historical period. These sites, as has been suggested by earlier investigators, are synonymous with the historical Mutapa state. The disappearance of these sites from the plateau area coincides with the building of loopholed stone structures on hilltops and unwalled related sites with similar material culture. These sites provide archaeological evidence for the near collapse of socio-cultural complexity long established in the area.

The emergence of loopholed stone structures and related unwalled sites with hilltop locations is a result of developments in the Zambezi valley associated with Portuguese settlement in the area, and the system of land exploitation synonymous with the *pazo* system. The resulting ripple effects influenced population dispersal in adjacent regions, including northern Zimbabwe. In addition, the Portuguese conquest of the Mutapa state during the 17th century created conditions of insecurity often resulting in the depopulation of large areas and the siting of settlements on hilltops.

The characterisation of the period in Zimbabwean history from the 16th to the 19th century as 'Refuge' represents a misunderstanding of the complex set of events involved, and a detailed archaeological examination of other regions not covered by this work is strongly encouraged to obtain a clear picture of the recent periods.

Key words: Mutapa state, Mt Fura, historical archaeology, Gt Zimbabwe Tradition, Baranda, Afro-Portuguese, loopholed stone structures, state formation, complex societies, collapse.

Innocent Pikirai
Department of Archaeology, Uppsala University, Gustavianum, S-753 10 Uppsala, Sweden and History Department, University of Zimbabwe, P.O. Box MP 167, Mt Pleasant, Harare, Zimbabwe

Cover design: Alicja Grenberger
The twenty-sixth chart by João Teixeira I, 1630, (Cortesao & da Teixeira 1960). The map shows the country of the Tonga, and the Bororo, in the lower Zambezi, and parts of the Mutapa territory of northern Zimbabwe.
© Innocent Pikirai
ISSN 0284-5040
ISBN 91-506-1007-4
Published by Societas Archaeologica Upsaliensis, Uppsala 1993
Editorial committee: Bo Gräslund, Paul J. J. Sinclair, Christina Bendegard, Elisabet Green
Distributed by Department of Archaeology, Uppsala University, Gustavianum, S-753 10 Uppsala, Sweden
Printed in Sweden by Bohusläningen Boktryckeri AB, Uidenvalla 1993
CONTENTS

List of illustrations

Acknowledgements

1. THE INTELLECTUAL SETTING: SOURCES, RESEARCH QUESTIONS AND PROBLEMS ... 15
 1.1 Introduction .. 15
 1.2 The sources of data ... 15
 1.2.1 Written sources ... 15
 1.2.2 Oral traditions .. 15
 1.2.3 The historiography of the Mutapa state 15
 1.2.4 Anthropology and ethnography 16
 1.2.5 Archaeology ... 16
 1.3 The research area .. 17
 1.4 Problem formulation .. 17
 1.4.1 Introduction ... 17
 1.4.2 The research problems 18
 1.5 Operational and conceptual framework 19
 1.6 State societies and complexity 20
 1.6.1 The concept of the state 20
 1.6.2 Perceiving collapse in state societies 21
 1.6.3 Models of state formation and development in the context of the Mutapa state 21
 1.7 Organisation of this work 23

2. PHYSIOGRAPHY OF NORTHERN ZIMBABWE: THE LANDSCAPE OF THE MUTAPA STATE ... 24
 2.1 Location and size .. 24
 2.2 Relief and drainage ... 25
 2.3 Temperature and precipitation 26
 2.4 Geology ... 27
 2.5 Vegetation: the Miombo Woodlands 29
 2.6 The cultural landscape of northern Zimbabwe with particular reference to the research area 29
 2.7 The spatial and demographic parameters 31
 2.8 Overview ... 34

3. THE ANALYTICAL CONTEXT OF LATER PERIODS: PERSPECTIVES IN HISTORICAL ARCHAEOLOGY ... 35
 3.1 Introduction .. 35
 3.2 Definition ... 35
3.3 Theoretical trends in historical archaeology 36
3.4 The practice of historical archaeology in Southern Africa 37
3.5 Overview: addressing the problem of Afro-Portuguese interaction .. 41

4. EXTRACTING THE DATA: THE ARCHAEOLOGICAL SURVEY 43
4.1 Introduction ... 43
4.2 Previous work in the research area 43
4.3 The survey methods .. 47
4.4 The survey results ... 49
 4.4.1 Foraging, early and later Farming Community sites 49
 4.4.2 Sites with graphite burnished pottery 51
 4.4.3 Sites with graphite burnished pottery and imports 52
 4.4.4 Unwalled sites, hilltop sites and burials 54
 4.4.5 Stone walled enclosures .. 56
 4.4.6 Nineteenth century refuges and early twentieth century battlefields 56
 4.4.7 Charcoal mounds, slag concentrations and iron furnaces 58
4.5 Some observations on cultural succession in the research area 60

5. EXTRACTING THE DATA: REGIONAL INTER-SITE AND LOCAL INTRA-SITE APPROACHES ... 61
5.1 Introduction .. 61
5.2 The regional scale .. 61
 5.2.1 The Great Zimbabwe tradition sites 61
 5.2.2 Loopholed stone structures and related sites with hilltop location 63
5.3 Sites connected with Afro-Portuguese trade 71
 5.3.1 Dambarare earthworks .. 71
 5.3.2 Luanze .. 73
 5.3.3 The Upper Angwa valley earthworks 73
 5.3.4 Rimuka .. 73
5.4 Case studies .. 75
 5.4.1 Baranda .. 75
 5.4.2 Muchekayawa Hill ... 84
 5.4.3 Chenguruve Hill .. 91
5.5 Overview .. 100

6. EXTRACTING THE DATA: CARTOGRAPHY AND WRITTEN SOURCES .. 101
6.1 Introduction .. 101
6.2 Purpose and general content of the written sources 101
6.3 Portuguese cartographic data ... 101
 6.3.1 A review of some cartographic works 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 Written sources</td>
<td>106</td>
</tr>
<tr>
<td>6.4.1 Early Muslim and Portuguese sources</td>
<td>106</td>
</tr>
<tr>
<td>6.4.2 The historical background</td>
<td>108</td>
</tr>
<tr>
<td>6.4.3 Archaeological sites mentioned in Portuguese written sources</td>
<td>109</td>
</tr>
<tr>
<td>6.5 The landscape and the settlement structure from the written and cartographic sources: an overview</td>
<td>119</td>
</tr>
<tr>
<td>7. DATA ANALYSIS AND INTERPRETATION</td>
<td>120</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>120</td>
</tr>
<tr>
<td>7.2 Ceramics</td>
<td>120</td>
</tr>
<tr>
<td>7.2.1 Local and imported pottery</td>
<td>120</td>
</tr>
<tr>
<td>7.2.2 Glassware and beads</td>
<td>154</td>
</tr>
<tr>
<td>7.3 Stone architecture</td>
<td>158</td>
</tr>
<tr>
<td>7.3.1 Overview</td>
<td>158</td>
</tr>
<tr>
<td>7.3.2 Criteria for fortification</td>
<td>158</td>
</tr>
<tr>
<td>7.3.3 Stone and house architecture</td>
<td>158</td>
</tr>
<tr>
<td>7.3.4 Great Zimbabwe tradition stone enclosures</td>
<td>160</td>
</tr>
<tr>
<td>7.3.5 Correlating traditions of ceramic manufacture with stone architecture</td>
<td>160</td>
</tr>
<tr>
<td>7.4 Other finds</td>
<td>160</td>
</tr>
<tr>
<td>7.4.1 Faunal remains</td>
<td>160</td>
</tr>
<tr>
<td>7.4.2 Metallurgy, agriculture, gold processing and craftwork</td>
<td>162</td>
</tr>
<tr>
<td>7.5 The chronological dimension: dating methods and problems</td>
<td>162</td>
</tr>
<tr>
<td>7.6 The spatial dimension: towards a settlement evolution and growth model of Barunda</td>
<td>168</td>
</tr>
<tr>
<td>7.6.1 The distribution maps</td>
<td>168</td>
</tr>
<tr>
<td>7.6.2 Site evolution and growth model as inferred by the surface material</td>
<td>171</td>
</tr>
<tr>
<td>8. RE-EXAMINING THE HYPOTHESES: THE STATUS OF THE GREAT ZIMBABWE AND MAHONJE TRADITIONS AND A CRITIQUE OF 'REFUGE'</td>
<td>176</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>176</td>
</tr>
<tr>
<td>8.2 The position of the Great Zimbabwe tradition in northern Zimbabwe</td>
<td>176</td>
</tr>
<tr>
<td>8.2.1 Presenting the hypothesis</td>
<td>176</td>
</tr>
<tr>
<td>8.2.2 Evidence of the Great Zimbabwe tradition sites in the research area</td>
<td>176</td>
</tr>
<tr>
<td>8.2.3 The identity of Barunda: capital or trading centre?</td>
<td>177</td>
</tr>
<tr>
<td>8.2.4 Redefinition of the problem</td>
<td>178</td>
</tr>
<tr>
<td>8.3 The position of loopholed stone structures in northern Zimbabwe</td>
<td>179</td>
</tr>
<tr>
<td>8.3.1 Presenting the hypothesis</td>
<td>179</td>
</tr>
<tr>
<td>8.3.2 The stone structures on Mt Pura</td>
<td>179</td>
</tr>
<tr>
<td>8.3.3 An alternative hypothesis</td>
<td>180</td>
</tr>
</tbody>
</table>
8.4 The Mutapa state in relation to the 'Refuge Period' 180
 8.4.1 Presenting the hypothesis and a view of the term 'Refuge' 180
 8.4.2 The archaeology connected with 'Refuge' 180
 8.4.3 An alternative terminology 181
 8.4.4 Historical evidence for the mfecane in the research area 181

8.5 The mid and lower Zambezi valley Tonga and their relationship with the Mutapa state during the historical period 182
 8.5.1 The historical identity of the Tonga 182
 8.5.2 The Maravi state formation and its effects on the Mutapa state, 16th–17th century 183
 8.5.3 The archaeological identity of the middle and lower Zambezi valley and southern Malawi 184
 8.5.4 The relationship between modern Tonga pottery and Mahonje 184

8.6 Overview 185

9. CULTURAL DEVELOPMENTS IN THE RESEARCH AREA AND THE ARCHAEOLOGICAL IDENTITY OF THE MUTAPA STATE 186

9.1 Introduction 186

9.2 Cultural succession in the research area 186

9.3 Settlement patterning 187

9.4 The environmental correlates 187

9.5 The socio-political contexts of Great Zimbabwe and Mahonje tradition sites 188

9.6 The Afro-Portuguese settlements 189

9.7 Presenting the model 189
 9.7.1 The identity of Baranda 190
 9.7.2 The Mahonje tradition 190
 9.7.3 Testing the model: the historical evidence 190

9.8 Future prospects 191

REFERENCES 193
LIST OF ILLUSTRATIONS

Maps

Map 1 Location of the research area
Map 2 The Zimbabwe plateau by 1500 AD
Map 3 A general map of northern Zimbabwe, showing the drainage and relief
Map 4 Relief map of the research area showing the plains to the north and the mountains to the south
Map 5 The geology of the research area
Map 6 The gold producing areas of northern Zimbabwe
Map 7 Land use map of the research area
Map 8 Areas subjected to detailed surveys
Map 9 Early and later farming community sites and evidence for iron smelting
Map 10 Sites with graphite burnished pottery and Great Zimbabwe tradition stone structures
Map 11 Sites with imported pottery
Map 12 Loopholed stone structures and walled sites with a hilltop location, 19th century hiding places and early 20th century battle fields
Map 13 Area covered by charcoal mounds
Map 14 Great Zimbabwe tradition stone structures in northern Zimbabwe
Map 15 The general area where loopholed stone structures have been found or reported in relation to northern Zimbabwe
Map 16 Archaeological sites in the Mufurudzi safari area
Map 17 Afro-Portuguese trading places in northern Zimbabwe
Map 18 Map of Baranda, general site plan and position of test pits
Map 19 Map of Baranda showing 5 x 5 m units where controlled surface collections were made
Map 20 Cartographic specimen 1
Map 21 Cartographic specimen 2
Map 22 Cartographic specimen 3
Map 23 Cartographic specimen 4
Map 24 Cartographic specimen 5
Map 25 Cartographic specimen 6
Map 26 Cartographic specimen 7
Map 27 Phosphate map of Baranda
Map 28 Early Farming Community settlement at Baranda (phase 1)
Map 29 Later Farming Community settlement at Baranda (Musengezi pottery) (phase 2)
Map 30 Distribution of local graphite burnished pottery, showing increase in settlement intensity (phase 3)
Map 31 Distribution of glass beads at Baranda
Map 32 Distribution of Chinese blue and white porcelain at Baranda
Map 33 Distribution of Far Eastern and Near Eastern stoneware sherds at Baranda
Map 34 Distribution of Near Eastern and Iberian earthenware sherds at Baranda
Map 35 Distribution of glassware at Baranda
Map 36 Composite distribution map of imported ceramics and glassware at Baranda
Map 37 The dispersal direction of the Mahonje tradition
Map 38 The relationship between Great Zimbabwe tradition sites and known areas of Afro Portuguese contact
Map 39 The Zimbabwe plateau and the lower Zambezi, late 16th to 18th century

Figures

Fig. 1 Plan of Chomagora, a Great Zimbabwe tradition site
Fig. 2 Plan of Chipunza Farm
Fig. 3 Plan of Chikohora Farm
Fig. 4 Pottery from Dambarare and from Luanze
Fig. 5 Pottery from earthenworks in the Angwa valley
Fig. 6 Plan of Trench I/a
Fig. 7 Stratigraphy of Trench I and Ia, sections facing south and north respectively
Fig. 8 Plan of Muchekayawa Hill
Fig. 9 The stratigraphy of Muchekayawa Hill midden, sections facing north-east and south-west respectively
Fig. 10 The stratigraphy of Muchekayawa Hill (midden), sections facing north-west and south-east respectively
Fig. 11 Plan of Muchekayawa Hill midden, after removal of ash
Fig. 12 Plan of Muchekayawa Hill midden, the reddish brown sterile layer
Fig. 13 Plan of Chenguruve Hill (eastern site)
Fig. 14 Plan of Chenguruve Hill (western site)
Fig. 15 Plan of Chenguruve Hill (eastern site) midden showing position of trench
Fig. 16 Stratigraphy of Chenguruve Hill (eastern site) (midden) sections facing east and west respectively
Fig. 17 Plan of Chenguruve Hill (eastern site) showing original surface before formation of the midden
Fig. 18 Plan of Chenguruve Hill (western site) (midden) showing position of trench and original surface before formation of the midden
Fig. 19 Stratigraphy of Chenguruve Hill (western site) (midden) section facing east
Fig. 20 Stratigraphy of Chenguruve Hill (western site) (midden) section facing west
Fig. 21 Profiles for shape forms 1a, 1b, 2 and 11
Fig. 22 Profiles for shape forms 3, 4, 5 and 6
Fig. 23 Profiles for shape forms 7a, 7b and 7c
Fig. 24 Profiles for shape forms 8a, 8b and 8c
Fig. 25 Profiles for shape forms 9a, 9b, 9c and 10
Fig. 26 Decoration motif group I: Bead or wrapped fibre designs
Fig. 27 Decoration motif group II: Comb-stamping designs
Fig. 28 Decoration motif group III: Fine incised line designs
Fig. 29 Decoration motif group IV: Broad incised line designs
Fig. 30 Decoration motif group IV: Broad incised line (BLI) designs (Panels)
Fig. 31 Decoration motif group V: Designs dominated by punctates
Fig. 32 Decoration motif group V: Designs dominated by punctates and broad lines of incision
Fig. 33 Decoration motif group VI: Painted designs
Fig. 34 Decoration motif group VII: Composite designs
Fig. 35 Local pottery from Mupuriri River (Swart Resettlement Village)
Fig. 36 Local pottery from Mupuriri River (Swart Resettlement Village)
Fig. 37 Local pottery from Mudzinga Farm (Farm 18, Chesa)
Fig. 38 Local pottery from Mudzinga Farm (Farm 18, Chesa)
Fig. 39 Shape forms 1a and 2, Baranda
Fig. 40 Shape forms 3, 4, 5 and 6, Baranda
Fig. 41 Shape forms 7, 8 and 10, Baranda, Trench I/1a
Fig. 42 Early and later Farming Community pottery, Baranda
Fig. 43 Later Farming Community pottery, Trench I/1a, Baranda
Fig. 44 Decorated sherds from controlled surface collections and test pits, Baranda
Fig. 45 Decorated sherds from controlled surface collections
Fig. 46 Comb stamping, punctates and painted designs, Trench I/1a, Baranda
Fig. 47 Fine and broad line designs, Baranda, Trench I/1a
Fig. 48 Broad line designs combined with other designs, Trench I/1a, Baranda
Fig. 49 Composite, applied motifs, Trench I/1a, Baranda
Fig. 50 Shape forms 1a and 1b and 10, Muchekayawa Hill, midden
Fig. 51 Shape forms 3 and 9, Muchekayawa Hill, midden
Fig. 52 Decorated sherds: fine to rough lines of incision and punctates or bead impressions, Muchekayawa Hill, midden
Fig. 53 Shape forms 1a, 1b, 2, 3, 5 and 9, Chenguurive Hill (eastern site), midden
Fig. 54 Shape forms 1a, 1b, 3, 25, 7, 8 and 9, and decorated sherds, Chenguurive Hill (western site), midden
Fig. 55 Ceramic crucibles from Muchekayawa Hill, midden
Fig. 56 Ceramic crucibles from Chenguurive Hill (eastern site)
Fig. 57 Crucibles and ground sherds from Baranda
Fig. 58 Ground sherds from Chenguurive Hill (western site) and Muchekayawa Hill
Fig. 59 Spindle whorls from Baranda
Fig. 60 Comparing bead colour/type, Baranda and loopholed stone structures
Fig. 61 Comparing bead sizes, Baranda and loopholed stone structures
Fig. 62 Daga lumps from Chenguurive Hill (eastern site)
Fig. 63 Daga lumps from Baranda, Trench I/1a
Fig. 64 Frequency of faunal remains from Baranda, Muchekayawa and Chenguurive Hill
Fig. 65 Metal objects from Baranda
Fig. 66 Metal objects from loopholed stone structures
Fig. 67 Metal objects from Chenguurive Hill (western site)
Fig. 68 Grinding stones from Baranda, Muchekayawa and Chenguurive (western site)
Fig. 69 Pebbles from Baranda
Fig. 70 Pebbles from Muchekayawa and Chenguurive Hills
Fig. 71 Calibration and cumulative frequency curves for radiocarbon dates from Baranda
Fig. 72 Calibration and cumulative frequency curves for radiocarbon dates from Muchekayawa Hill
Fig. 73 Calibration and cumulative frequency curves for radiocarbon dates from Chenguurive Hill (eastern and western sites)
Fig. 74 Combined calibration and cumulative frequency curves for radiocarbon dates from Muchekayawa and Chenguurive hills (eastern and western sites)

Tables

Table 1 Summary of survey data
Table 2 Summary of sites in the research area with imported wares
Table 3 Summary of charcoal mounds in the research area
Table 4 Summary of radiocarbon dates from research area
Table 5 Summary of OSL dates from research area
Table 6 Local pottery from Mudzinga Farm, shape forms correlated with vessel parts
Table 7 Local pottery from Mudzinga Farm, decoration technique combinations
Table 8 Local pottery from Baranda: sample size and frequency; summary of major typological elements
Table 9 Local pottery from Baranda: shape forms correlated with vessel parts
Table 10 Local pottery from loopholed stone structures: sample size
Table 11 Shape forms correlated with vessel parts: Muchekayawa Hill
Table 12 Shape forms correlated with vessel parts: Chenguurive Hill (eastern site)
Table 13 Shape forms correlated with vessel parts: Chenguurive Hill (western site)
Table 14 Decoration technique combinations: Baranda pottery
Table 15 Decoration technique combinations: loopholed stone structures
Table 16 Decoration technique combinations: Afro-Portuguese trading places
Table 17 Imported pottery from Baranda: dates of surface collected material, sample size and frequency
Table 18 Imported pottery from Baranda: dates of excavated material, sample size and frequency
Table 19 Quantification of beads by colour/type, Baranda
Table 20 Quantification of beads by size, Baranda
Table 21 Quantification of beads by colour/type, loopholed stone structures
Table 22 Quantification of beads by size, loopholed stone structures
Table 23 Faunal data from Baranda Field, Muchekayawa and Chenguurive hills

Plates

Plate 1 Chizinga mountain, rugged terrain
Plate 2 Baranda, view from north
Plate 3 Chizinga mountain, stone structure on summit
Plate 4 Baranda, view from south
Plate 5 Great Zimbabwe tradition stone walling, Matanda Farm, Chesa SCFA
Plate 6 Loophole, Chipunza Farm
Plate 7 Muchekayawa Hill, planning the enclosure
Plate 8 Stone structure on hill south of the Mukaradzi valley showing the schist blocks in situ
Plate 9 Stone walling on rock foundation, Dombomarambe Hill
Plate 10 Lintelled opening, loopholed enclosure in the Upper Karuwe Valley
Plate 11 Monoliths in middle of enclosure, Upper Karuwe
Plate 12 Groups of vertical stone slabs stretching to background
Plate 13 Groups of vertical stone slabs
Plate 14 Vertical stone slabs with grooved top ends, enclosure on western end of Mt Faru
Plate 15 Baranda, mapping the western section
Plate 16 Controlled surface collections in progress
Plate 17 Baranda, excavations in progress
Plate 18 Medallion, Baranda, surface collections
Plate 19 Medallion, Baranda, surface collections
Plate 20 Muchekayawa Hill, wall to south-west
Plate 21 Muchekayawa, ash and root inclusions, midden
Plate 22 Muchekayawa, midden excavations
Plate 23 Muchekayawa, pot recovered in situ, midden
Plate 24 House mound, Chengurave Hill (eastern site)
Plate 25 Chengurave Hill (eastern site), midden
Plate 26 View of trench, Chengurave Hill (eastern site), midden
Plate 27 Midden outside entrance, Dombomarombe Hill
Plate 28 Far Eastern stoneware, Baranda, surface collections
Plate 29 Stoneware pieces, Baranda, surface collections

Plate 30 Blue and white porcelain, Baranda, surface collections
Plate 31 Blue and white porcelain, Baranda, surface collections
Plate 32 Blue and white porcelain, Baranda, surface collections
Plate 33 Blue and white porcelain, Baranda, surface collections
Plate 34 White-yellowish earthenware, Baranda, surface collections
Plate 35 Near Eastern earthenwares, Baranda, surface collections
Plate 36 Glazed red earthenware, Baranda, surface collections
Plate 37 Earthenware handle, Baranda, surface collections
Plate 38 Pieces of green glass, Baranda, surface collections
Plate 39 Eastern view of a Great Zimbabwe tradition stone structure in Nowedza CL, northern Zimbabwe
ACKNOWLEDGEMENTS

Admittedly the time required to produce this work was very limited, and the pressure on me to complete was immense. I am grateful to a number of people who appreciated the work load at my disposal and assisted in many ways.

I owe my interest in the subject of archaeology to Professor Vella from Malta who taught me the course Africa in Antiquity at the University of Zimbabwe in 1983. Peter Garlake introduced me to Zimbabwean Prehistory and Archaeology when the course was introduced at the University of Zimbabwe in 1984. My horizons in archaeology were broadened with the contacts I made with Paul Sinclair when I was an undergraduate student in Zimbabwe.

This thesis owes much to the comments and advice of my Zimbabwean and Swedish teachers and supervisors, Robert Soper, Gilbert Pwiti, Docent Paul Sinclair and Professor Bo Grönlund. They do not of course share my responsibility for any errors which remain. Docent Sinclair not only examined my drafts and suggested several changes, but also broadened my ideas to enable my work to be related to a wider intellectual audience. Professor Grönlund also made useful suggestions. Robert Soper introduced me to the basic approaches in the field which included site surveying and excavation, and ceramic analyses. His standards of approach to data collection in the field are excellent. He made detailed comments on earlier drafts of this work. Gilbert Pwiti helped with data on faunal analyses from all the sites selected for detailed study. Professor David Beach commented on the historical section in this work, giving up to date comments on written sources relating to the Zimbabwe plateau. This work also benefited from the comments made by Henry Wright in Nairobi in January 1993, who also was my teacher in Upsala in 1991.

Particular thanks are owed to Mukundishe Chifamba, technician in the Archaeology Unit of the University of Zimbabwe who helped me in conducting all the fieldwork, and by providing technical and logistical assistance. He also prepared the material for analysis. Without his assistance, I would not have been able to conduct fieldwork on my own.

I would like to thank the Executive Directors of the National Museums and Monuments of Zimbabwe, Dr Matipano (who is now retired) and Mr Munjeri for granting me permits to excavate in northern Zimbabwe, and for temporarily exporting finds for scientific examination in Kenya, Denmark and Sweden. Many thanks are owed to the staff at the Museum of Human Sciences in Harare for giving me access to some of their collections, but especially Paul Mupira who assisted intensely with the classification of the glass beads recovered from my excavations.

Special permission was granted from the Director (Administration) of the Department of National Parks and Wildlife Management to survey the Mufuwudzi safari area in between the Gwetera and Mazowe Rivers.

In the field Siso Nyamudzo helped us considerably in the understanding of places of cultural significance in the research area, and led me to many archaeological sites. Viktor Swedberg from Sweden helped with the phosphate mapping of Baranda, one large field site which has been selected for detailed study in this work. A team of local people helped with the excavations. Support and encouragement also came from the local people of Chesa, in Mt Darwin. I particularly thank Mr Baranda, Mr Kapfura and Mr Mfundu for allowing us to carry detailed investigations on their farms. Chomagora Secondary School provided us with accommodation when we went to Mt Darwin for fieldwork. I would like to single out the Headmaster of the school, Mr Bandason who enabled us to use some of the school facilities, and made our stay comfortable.

In Mombasa, Dr Abungu arranged my visit to the Urban origins regional centre where I consulted literature on the imported ceramics and had access to the comparative collections kept there. The assistance of his staff is greatly appreciated. He also arranged contacts with Dr Richard Wilding who helped greatly in identifying some of the imported material recovered in northern Zimbabwe.

In Denmark I would like to thank Dr Vagn Mejdal who assisted me in the sampling of ceramic material for luminescence dating. His OSL dates are the first to be produced for northern Zimbabwe. In England I was greatly helped by Francis Hebert of the Royal Geographical Society, Kensington Gore, London to locate some of the cartographic specimens relating to the Portuguese in the Zambezi valley and adjacent territories. The staff of the British Museum also helped greatly in this direction. At
the Victoria and Albert Museum in London, I read literature on Oriental ceramics in the Far Eastern Ceramics Department, and had a chance to examine some of the complete vessels in their collections dating from the 16th to the 19th centuries. In Southampton, Professor Peter Ucko commented on the initial drafts of this work.

I also would like to thank the staff of the Arkeologiska Institutionen, Uppsala University for their help and advice during the entire period of my studies in Sweden; Michael Petrén for helping with the production of computer generated maps for Baranda, and Frands Herschend for the calibration of the radiocarbon dates. On an administrative level I would like to mention Elisabet Green who handled my requests and problems efficiently especially during the most difficult Swedish summer time. Helena and Kjel Knutsson also assisted me in overcoming many difficulties including stress and loneliness, and gave moral support. Jimmy Jonsson provided accommodation during the final write up of this work, and assisted in many computing tasks. Special acknowledgment to Alicia Grenberger, Margareta Andersson and Anita Mattsson for preparing my drawings for publication. Christina Bendegard organized the publication of this work.

Throughout this work, financial support has come from SAREC, who have helped greatly with the development of archaeology at the University of Zimbabwe and also in Zimbabwe as a whole. My education in Sweden has been financed by SAREC, who also generously provided funding for travel and subsistence to a number of conferences and workshops in Africa which were of great intellectual help and influence to me.

Finally I would like to mention the support I received from my parents and members of the family, and the concern and prayers they made whenever I went abroad for course-work studies. The difficulties experienced by my wife Susan during my absence are appreciated as there was always a lot of work to be done at home. However her poor health during my last year of study nearly disrupted this work as it demanded my presence and attention. Her support and encouragement that I should carry on with and finish my work is greatly appreciated, and I will never be able to reciprocate fully this gesture of love and goodwill.

15 September 1993

Innocent Pikirayi
1. THE INTELLECTUAL SETTING: SOURCES, RESEARCH QUESTIONS AND PROBLEMS

1.1 Introduction

The Mutapa state is largely known from oral historical evidence and written sources but has never received serious archaeological attention. The reason is that events in question are such recent parts of Zimbabwean history that archaeology is not seriously regarded as the most appropriate means to understand them.

While the existence of the Mutapa state became known to some Europeans at the beginning of the 16th century, the Swahili traders were probably in contact with it earlier. The geographical location of the state is approximately the northern part of the Zimbabwe plateau, south of the lower Zambezi Valley beginning from the present settlement of Zumbo. Its maximum territorial extent has been exaggerated by earlier cartographers and chroniclers so much that it has been looked upon as an empire extending from the Mozambican coast in the east to the Kalahari desert margins in the west. However during the historical period starting from the early 16th century, the state was territorially confined to the northern margins of the Zimbabwe plateau and the adjacent Zambezi lowlands.

Despite recent research (cf. for example Beach 1991; Mudenge 1988) historical data on the Mutapa state is still inadequate. Abraham dominated the research on the Zimbabwean plateau area of the Mutapa state during the 1950s and 1960s and little has been produced by local Zimbabwean historians since (Mudenge 1988, pp. 1–2). Instead research was carried out on the Rozvi, Manyika and other pre-colonial societies with only partial references to the Mutapa state. A number of scholars also concentrated their research in the lower Zambezi Valley, in Mozambique, relating the Mutapa state to Portuguese commercial activities in the area and parts of the hinterland (see below). This ‘coastal perspective’ (cf. Mudenge 1988, p. 2) has greatly narrowed the understanding of how the state actually operated in the interior, and resulted in certain biases created for example by over-stressing aspects such as Afro-Portuguese trade.

When the sources of data for the Mutapa state are reviewed, the research needs and priorities of archaeologists are clarified. This is not an easy task as little pioneering work has been carried out. It is thus necessary to define some of the issues directly relevant to this research such as the concept of the ‘state’ and its archaeological equivalence.

1.2 The sources of data

1.2.1 Written sources

The primary historical evidence for the Mutapa state comes from Portuguese documents. The Portuguese entered into the Zimbabwe plateau at the beginning of the 16th century. The documents appear in many forms and, despite a heavy bias towards trade, cover a wide variety of subjects, including the politics at the court of the various Mutapa rulers. Most of the documents have been published and translated from the original Portuguese to other languages (Theal 1898–1903, 1912; Axelton 1940, 1964; da Silva Rego & Baxter 1962–75; Strandes 1971; Randles 1975). Historians have drawn upon some of these sources to write the history of the regions making up the Zimbabwe plateau, including the Mutapa state (Alpers 1968, 1970; Chaniwa 1972; Beach 1980, 1987; Bhila 1982; Mudenge 1974, 1988).

1.2.2 Oral traditions

Oral traditions of population groups living in the area of the Mutapa state have been collected ever since the beginning of the 20th century by colonial administrators, anthropologists, antiquarians and historians. In the late 1950s Abraham (1959, 1964) collected a set of traditions from the Guruve area which emphasised the origins of the Mutapa state. Although oral traditions focus largely on origins a careful analysis of the traditions of the state by Beach in the 1970s and 1980s has shown a much wider diversity of the subject matter (Beach 1980, 1983, 1991). Mudenge (1988) has demonstrated the need to strike a balance between the information from the written sources and oral traditions. In this way oral traditions can be used as a means to check the authenticity of Portuguese sources.

1.2.3 The historiography of the Mutapa state

The writing of the history of the Mutapa state has experienced a change in emphasis since the 1960s. This has largely been governed by the sources the researchers have drawn upon for their work. Because trade loomed large in the Portuguese documents, most of the research on the Mutapa state to the mid-1970s over-emphasized this
aspect and went further to apply the external trade hypothesis to explain the origins of the state (see for example, Chanaiba 1972). This also influenced archaeological thinking (for example Huffman 1972a). The economy of the state was seen as based on the state control of external trade and gold mining. This picture has been revised by Beach (1974, 1980, 1984a) and Mudenge (1974, 1988) who have stressed the agricultural base of the state and the importance of the tributary system as some of the most important sectors of the Mutapa economy.

An uncritical acceptance of the oral traditions collected by Abraham in the late 1950s has led to a link between the fall of the Zimbabwe state in south-central Zimbabwe and the rise of the Mutapa state in the northern part of the Zimbabwe plateau (Garlake 1973a). This interpretation by Abraham (1959, 1962, 1964) has been questioned by Beach (1980, 1991) who has examined in detail the process of settlement in the northern part of Zimbabwe in the 15th and 16th centuries.

One problem that has not been resolved satisfactorily is the size of the Mutapa state. The area controlled by various Mutapa state rulers shrunk significantly with the passage of time, and by the 19th century the state was confined to the area of Chidima in the Zambezi valley (Mudenge 1988). It is not clear whether during the 15th century or earlier the state controlled an area extending to Guruuswa in the south, Manyika in the east, Barwe in the north-east, and other areas. The status of some of the kingdoms such as Manyika and Barwe in relation to the Mutapa state has not been clarified either.

1.2.4 Anthropology and ethnography

Some anthropological work has been carried out in the area formerly under the control of the Mutapa state. Most of this work was commissioned by the Native Affairs Department of then Southern Rhodesia from the late 1920s (Bullock 1928; Posselt 1929, 1935). These investigations are of little direct archaeological importance, but they have contributed greatly towards the understanding of Shona material culture, religion, kinship, marriage, social and political organisation, economy and subsistence. Such data can be fully exploited for archaeological interpretation (cf. Sinclair 1987, Chs. 8 & 9).

Wieschhoff (1941) combined both archaeology and ethnography in his research. The title of his work, The Zimbabwe-Monomotapa Culture is important in that he was already examining the Great Zimbabwe tradition and the Mutapa state as part of the same cultural phenomena.

In the beginning of the 1950s Holleman (1953) worked in north-eastern Zimbabwe and collected information on traditional religion. Gelfand (1962) also researched on the mhondoro cult in northern Zimbabwe and other aspects of Shona traditional religion. Garbett (1966) worked among the Korekore in the Zambezi valley and collected data relating to religion and political succession.

More anthropological and ethnographic data were collected between the mid 1960s and the early 1970s before the liberation war. Bourdillon's work in the Mt Darwin district and among the Tavara (Bourdillon 1970, 1972), White's (1971) research on the customs of the people in the Urungwe district and Latham's (1975) work in the Centenary, Mt Darwin and Rushinga areas are important.

1.2.5 Archaeology

Archaeological data directly relating to the Mutapa state has been lacking partly due to the limited amount of research done in northern Zimbabwe as compared to the site of Great Zimbabwe and other areas on the Zimbabwe plateau. The history of archaeological research in the Mt Darwin area (which is only part of northern Zimbabwe) is given in Chapter 4. Here I will mention some of the archaeological works relating to northern Zimbabwe as a whole. The earliest archeological works are connected with the research on the origins of Great Zimbabwe. Bent (1896) visited northern Zimbabwe in the late 19th century and reported a number of sites including Dambarare (a trading market in the upper Mazowe), Yellow Jacket (in the Masembura area), and Tere (a Great Zimbabwe tradition settlement in the Mutoko area). His reports were used by Hall (1905, 1909), Hall & Neal (1902), and Wilmot (1896) to propose the Arabic-Semitic origins of the Zimbabwe state.

In the late 1950s Whitty (1959) carried out an architectural study of some of the stone structures in Mashonaland. A follow-up to his work was made by Garlake (1970a) and Summers (1971). It was Abraham (1959) and Axelson (1956) who made a direct association between some of the stone structures in northern Zimbabwe and the Mutapa state. In the mid 1960s Robinson (1965) carried out surveys in the Guruve area of the Zambezi Escarpment and the adjacent Dande area.

Focus was also placed on the farming communities and the works of Robinson (1966a), Garlake (1970b) and Huffman (1971a, 1979) are important. These investigations however with the exception of Garlake (1970b) have no direct bearing to the archaeology relating to the Mutapa state.

It was Garlake (1973a, 1973b) who linked the Great Zimbabwe tradition settlements in northern Zimbabwe with the early phase of the Mutapa state, following the excavations of Nhunguza and Ruanga. The first chronological sequence of the region had been produced a few years earlier (Huffman 1971a) but the status of the Mutapa state was vague. In subsequent publications Huffman (1974, 1975) proposed a Darwin facies of the 'Ruins
Tradition", which he associated with the Mutapa state in northern Zimbabwe (see Chapter 8).

During most of the 1970s there was a dearth of archaeological research in northern Zimbabwe as a result of the war of Independence though the region was included in inter site analysis by Sinclair & Lundmark (1984) and Sinclair (1987). Archaeological research was resumed in the 1980s by the Archaeology Unit of the History Department, University of Zimbabwe.

1.3 The research area

Three research projects are currently running in northern Zimbabwe and are broadly aimed at investigating the archaeological evidence that may lead towards a definition of the basic population of the Mutapa state. Three areas have been selected for detailed study and these are Centenary, Guruve-Dande and Mt Darwin.

The Centenary Project focuses on a group of five stone structures in the upper reaches of the Ruya drainage basin to determine the relationship between the establishment of Great Zimbabwe Tradition and the original later farming community Musengezi Tradition settlements in the area (see Soper 1990).

In a further development at the foot of the Zambezi Escarpment in the Dande area five stone structures are being investigated with a view to understanding their local context and the stage at which the Mutapa state shifted into the area from the plateau. Survey work has started in the Guruve area, covering parts of the Escarpment and the northern extension of the gold belt and the Great dyke. This area was inhabited mostly by people making Musengezi pottery (Pwiti, forthcoming).

This work represents the current state of knowledge of the Mt Darwin area, about 170 km NNE of Harare (see Map 1). The area was chosen because of its association with the Mutapa state and the Portuguese since the historical period. A few place names mentioned in Portuguese written sources such as the Mukaradzi and Mazowe valleys (in connection with gold mining), Mt Fura (stone structures), Chizinga and Nyakaka (mountains used as refuges), Massapa and Bokuto (trading stations) are in the research area or further east or south.

The Mt Darwin area has aroused much archaeological interest since the beginning of this century, focussed on the location of the Portuguese site of Massapa and the cultural context of stone structures, mostly looted. This interest however was overshadowed by the desire to make fortunes in the famed gold mining area of the Mukaradzi valley and adjacent areas. This attitude and habit has its origins in the 1920s and 1930s and the environmental destruction and ecological disaster now characterising the research area is a reflection of the same process.

As part of an overall archaeological research goal, a number of aims or objectives are presented briefly below. In order to identify archaeological sites dating at least to the historical period, and by extension to the Mutapa state, we had to revise the whole archaeological picture presented to us through detailed field surveys. Archaeological site surveys of the present research focussed on the Mukaradzi Valley and adjacent mountains. Following the detailed surveys sites were selected for excavation. Partial surveys were also made in the Mufurundzi Safari Area to the south. Taken as a whole the research was an archaeological investigation of part of the area known historically as Mukaranga once under the Mutapa state before it moved to the Zambezi Valley. This area is approximately defined by the Mazowe and Ruya rivers.

Research in Mt Darwin aimed at locating sites with imported ceramics which would assist towards identifying archaeological sites that may be attributed to the Mutapa state. The investigation has been extended to include stone structures in the area, some of which have imports.

1.4 Problem formulation

1.4.1 Introduction

Historians seem to have successfully resolved some of the questions regarding the politics at court and the economy of the Mutapa state because these issues are covered in detail in written sources and oral traditions. However other important questions remain unanswered.

Firstly there is the assumption that the Mutapa state developed from the fall of Great Zimbabwe but the nature of this development has not been clearly defined by either archaeologists or historians. This problem also revolves around the date of the establishment of the Mutapa state. The suggestion of a period in the mid 15th century is
based on the assumption that Great Zimbabwe ceased to exist as a centre of political and economic power at that time, or alternatively from a rather unclear reconstruction of the succession line of the Mutapa ruling houses using oral traditions which can only be projected within a time depth less than 500 years from the present. There has never been serious consideration of the Mutapa state as a deliberate extension by the rulers at Great Zimbabwe to take advantage of the resources provided by the northern extension of the Zimbabwe plateau. Sinclair & Lundmark (1984) provided a model which strongly suggested this possibility. Assigning archaeological sites to the state has been largely avoided given the inadequate data available.

Another crucial question is the extent of the territory controlled by the Mutapa state. Different positions have been taken by scholars, some see it as an empire stretching from the desert margins of Botswana in the west to the Mozambican plain to the east, and from the Zambezii in the north to the Limpopo in the south (cf. Mudenge 1988; see also Huffman 1986), while others see it as a limited territorial entity which adapted to changing socio-political circumstances (Beach 1980). The first interpretation treats the Mutapa state as static entity and fails to address seriously the formation of political units such as Manyika, Barwe, Sedanda, Rozvi and others which are assumed to have broken away from the Mutapa state.

An additional question which has not been successfully addressed by historians is the archaeological character of the period from the 15th to the 19th century, and how the Mutapa state fits into it. Beach (1980) gives an outline of historical developments on the Zimbabwe plateau including the Mutapa state, while Mudenge (1988) discusses the Mutapa state in the plateau and Chidema areas of the Zambezi Valley. The connection between the Korekore dialect group and the Mutapa state has not been discussed in any detail, although this linguistic cluster largely covers a major area once under the control of the state. In his book, The Changing Past: Farmers, Kings and Traders in Southern Africa, Hall (1987, Ch. 11) sees the three centuries from the 16th century as representing turmoil. The major contributing factor to this was the introduction of merchant capitalism from Europe. The Portuguese commercial penetration into Zambezia was marked by conquest and interference with the politics of some of the societies they contacted in the interior, and this resulted in disruption. The theme is important in that it attempts to understand the social and political transformations or changes of state and non-state societies for the three centuries ending in the 19th century. When the mfecane took place in southern Africa in the first half of the 18th century, there were both internal and external elements to the forces generating change in the region. Researchers in the past have failed to present such an interpretation at the micro-scale even with adequate data at their disposal (Summers 1958). Some scholars suggest that the Mutapa state represented what has been called the 'Refuge' period (Huffman 1971a) (see below). Given little archaeological research in northern Zimbabwe this assertion has gone unchallenged.

1.4.2 The research problems
In the light of the research questions outlined above, a case is presented demanding an archaeological understanding of the Mutapa state. Any research project on the Mutapa state cannot address all the unanswered questions. A number of problems will be addressed in this work and they are given as follows:

1 Chronology: It is necessary to define the cultural succession in the research area, and relate it to the already known sequences elsewhere. This aspect has not been addressed in previous work.

2 Afro-Portuguese Interaction: Establishing areas or places of Afro-Portuguese contact in the research area is a key towards the understanding of the material culture that can be related to the Mutapa state. The starting point would be an examination of ceramic collections recovered from Afro-Portuguese sites and integration of the results with those obtained from other sites with evidence of external contact (through imports, etc.).

3 The position of Great Zimbabwe tradition settlements in the research area: This aspect has been examined in a number of works (Garlake 1973b; Sinclair 1987; Soper 1989) and these sites may represent early capitals of the Mutapa state (Garlake 1973b, Beach 1980). Huffman (1986) claimed to have identified a full Zimbabwe culture capital pattern of the Mutapa state on Mt Fura but did not demonstrate how it was related to the Great Zimbabwe tradition.

4 The meaning of the term 'Refuge' (cf. Summers 1958): Refuge is a catch all term that has been used by both archaeologists and historians to characterise cultural and other developments on the Zimbabwe plateau at least from the 16th century. Written sources and archaeological data will be used in this work to address this question. An attempt will be made to identify the 'Refuge' phenomenon and redefine it if necessary.

It is not possible to address questions pertaining to the size and scale of the Mutapa state at this stage as this is an issue which can only be solved by a long term research programme, and by integrating data from several research projects which are being carried out in northern Zimbabwe at present.

The above problems may be considered as working hypotheses which are based on the following assumptions: Firstly cultural succession can produce data on
ceramic continuity or discontinuity, and we should expect to recover ceramics which relate to the historical period. Secondly, if the Mutapa state developed from the Great Zimbabwe tradition we should expect a continuation of material culture traits in stone architecture and other material such as ceramics. Evidence of discontinuity probably means decline or replacement of the existing population (cf. Huffman 1986) or a simple cultural change.

Thirdly, as pointed out above, evidence of Afro-Portuguese interaction can be found in such places as market centres where there is a high frequency of exotic trade goods. Any decrease in the frequency of trade goods must be interpreted as representing a disruption or decline of the contacts or trade with the coast, and a historical explanation must be sought to clarify it.

Finally there should be a way of assigning sites to the period that has been improperly termed ‘Refuge’. Archaeological data should assist in the understanding of socio-political changes in northern Zimbabwe since the 17th century when the Mutapa state ceased to be a dominant factor on the plateau.

1.5 Operational and conceptual framework

In presenting the physiography of the research area (see Chapter 2), northern Zimbabwe has been viewed as a changing cultural landscape. Cultural landscape studies underline the importance of the relationships between space, time, environment and culture (Aston 1985; Welinder 1988). Is northern Zimbabwe a reflection of a landscape of socio-political power; a landscape which reflected perpetuated hierarchies and patterns of political control?

When putting together data from at least two disciplines it is necessary to define concepts which permit the transfer of data and insights from one frame of reference to another (see Sinclair 1987, p. 29). The methods employed in historical archaeology are presented in Chapter 3. Historical documentation was used to aid interpretation (Chapter 6). However, despite the availability of a wide body of records, we still face the problems of explaining change in the material culture remains, expressing exchange patterns in the archaeological record, and spatial patterns of settlement distributions in the context of time, space and social formation. In discussing the development of the Mutapa state, models on the characteristics of complex societies were used.

The fieldwork approach used in the research area can be analysed in terms of three aggregating levels of activity. These are: the employment of basic techniques in the field and in making observations; the use of hypotheses to guide observation; and, the generation of hypotheses from a general problem framework.

A number of problems were encountered when working at the individual site level. First was the restricted scale of archaeological investigation, given the costs, the amount of time available and the limited curation and analytical facilities. Random and controlled surface collections were employed to supplement excavated material from test pits and small trenches. The second problem was the representativity of the data sampled from a particular archaeological site. Sinclair (1987, p. 32, pp. 73–7) has exemplified in the case of a Mitolo tradition site near Maputo that an excavated randomly spread sample gives a more accurate estimate of the total site area, and provides a better basis for estimating the degree of representativity of the find collection than a solely selective one. The same could be demonstrated with the controlled surface collections of Baranda, one of the sites in the research area selected for detailed study, where excavation was limited by the amount of disturbance on the site. Here the relative spatial densities of artifacts were used to interpret the function and organisation of the site.

At the inter-site level, previous archaeological surveys in the research area have not produced a coherent and reliable picture of the distribution and scale of the different categories of sites found. Many archaeological sites remain unreported or have not yet been found. A number of problems were encountered when working at this level. The first problem is that of scale: the area which must be covered in order to obtain a clear picture of the distribution of sites. Some researchers have defined an arbitrary boundary around a single site or a group of sites and then applied the concepts used in catchment analysis. The ideal would have been to select a geographical or a cultural frontier or boundary and then define the research area on the basis of either of the two. The problem with this approach is that cultural boundaries are not always limited by geographical ones. A combination of a purely intuitive or judgemental approach and random stratified sampling was used to locate sites.

The historical period in northern Zimbabwe is taken as the time frame from the late 15th century to the present. It is a period covered largely by written sources and oral traditions. In conducting archaeological investigations in a time frame largely the domain of historians, care has been taken to avoid the ‘tyranny of written and other sources. An archaeological picture of the research area is presented as detailed as possible, and this is then related to the written sources in situations where there is a clear basis for such comparison. The perspective taken is based on the theory and methodology of historical archaeology (see Chapter 3). It is defined here as the study of sites which can be interpreted with the aid of historical evidence and datable mostly by imported artifacts.
1.6 State societies and complexity

1.6.1 The concept of the state

It is necessary to discuss the concept of the state, for any research of this nature will generate debate on some of the concepts associated with socio-political complexity.

The debate on origin, development and decline of state societies covers a multidisciplinary spectrum and different points of view are expressed by philosophers, historians, political scientists, sociologists, anthropologists and archaeologists (cf. Fried 1967; Carneiro 1970, 1981; Wright 1977a, 1977b, 1986; Haas 1982; Tainter 1988; Rowlands 1989; Gledhill 1988). Some of the key words used in the existing literature such as 'civilisation', 'complex society', 'chiefdom', 'state', and 'urbanism' have been frequently redefined. The extreme views of Wallerstein (1974, 1991) on how 19th century European intellectual and technological achievements still affect our approaches in archaeology are valid examples. Their views are a reaction to some of the meanings implied by the terms used in the discussion of socio-political complexity.

There is no single definition of state that is accepted by all scholars, and this has resulted in multiple definitions propounded by scholars or certain schools of thought. The phrase 'complex society' is now used in place of civilisation. It is viewed in terms of differentiation and integration, which examine both the vertical and horizontal relationships involved in that society and the structures that maintain these relationships. This definition works adequately in describing the emergence of central power, but 'complexity' in theory can also refer to a number of cultural achievements. Hunter gatherer societies can also be regarded as complex (Tainter 1988, p. 5). The definition of state is also limited by the fact that it is a legal concept which cannot be recovered archaeologically. It is not easy to relate the concepts of social scientists, anthropologists, historians, etc with archaeological units. Settlement architecture, for example, has been used to define the Zimbabwe state (Sinclair 1987). The problem with archaeologically observed phenomena such as this is that of scale, for example the geographical area in which such a state operated.

The difficulty in understanding the emergence of state or hierarchically organised political and economic structures is appreciated (Wright & Rakotoarison 1990). It has been argued that 'chiefdoms' are pre-state societies (cf. Fried 1967; Carneiro 1981). The transformation from this stage to state is not clear, but would be expected to vary from region to region. Applying such typological concepts to the discussion of the levels of social complexity is no longer valid as states do not necessarily evolve from non egalitarian societies. The Zulu state is such an example. It would suffice to make a distinction between states and other kinds of societies, since the typological approach obscures social variation and change. The development of complexity is a continuous variable.

Complexity should be perceived in terms of inequality and heterogeneity. We should expect a state to include a number of formerly independent, pre-existing villages or groups. This dimension of social inequality is important in discussing state formation, for example, on the Zimbabwe plateau, where terminal early farming community sites have not been discussed within the context of the developments of complexity during the early second millennium. Chiefdoms may display many points of similarity to more complex state organised systems, but there are also problems in defining what a chiefdom is. The term 'chiefdom' has been used extensively by some American scholars (Seaton 1978, p. 270; Carneiro 1981). Their definitions range from a society ruled by chiefs to a level of political hierarchy involving a redistributory economic system. Such definitions work within the context of Hawaii and other Polynesian states where research on the evolution of such political systems has been conducted (cf. Service 1975). In Africa use of the term 'chiefdom' has been complicated by colonial rule in that the same term was applied to divide societies. Some scholars have suggested the use of the term 'chieftaincies' instead (Cohen 1978, p. 35 ff.).

In the Zimbabwean context historians have used the word 'dynasty' to refer to lines of defined rulers in relation to specific territories (cf. Beach 1980). Dynasties are essentially concerned with legitimacy, which also entitles them to certain land. Powerful dynasties are known to have controlled other less powerful ones as is the case for Mutapa, Manyika and others (cf. Beach 1980; Bhila 1982). The concept of 'dynasty' cannot be correlated directly with 'chiefdom' in understanding state formation, but in northern Zimbabwe comprehending political dynamics at this level is crucial in understanding state development processes.

Some theoretical positions over what a state should be are often based on inadequate data or case studies with limited applications. A number of works discuss the character of states (cf. Claessens & Skalnik 1978) and all agree that states are territorially organised (and they are concerned with maintaining territorial integrity), contrast with other less complex societies such as chiefdoms or chieftaincies, that they are centrally organised and that they are internally differentiated along economic, cultural and ethnic lines.

In this work, a definition internal to the system is adopted. The position taken here is given in Sinclair, Pitirimayi, Pevi & Soper (1993) where we propose the use of a wide range of sources to help archaeological interpretation: a holistic approach. The Mutapa state is a political entity, which by the 16th century had attained considerable com-
plicity in the form of settlement structure, religious, military and diplomatic organisation, external trade, agriculture, gold production and ivory management, and a high level of political administration (cf. Mudenge 1988, Chs. 3–5, pp. 77–200). A central feature of the state’s economic organisation is the ability of the rulers to exact tribute from their subjects, which means they had access to wealth generated by the community.

The fundamental working hypothesis pursued here is the examination of the Mutapa state in the overall context of the expansion of the Great Zimbabwe tradition settlements in northern Zimbabwe. The Zimbabwe state is not perceived in unitary terms, but as an archaeological manifestation, or possibly an aggregate of transformations, some of which are apparently a product of the historical period. Archaeological evidence is then used to take a position regarding the meaning of this expansion.

From the foregoing survey it is clear that the concept of the state is too broad to be analysed concisely. Some of the concepts discussed above will be used to explain another aspect of complexity, that of collapse, and to present a general model on the formation of the Mutapa state.

1.6.2 Perceiving collapse in state societies

The explanation of collapse in state societies has generally received simplistic treatment from scholars. It is important to perceive it as a transformation with a much wider societal implication, affecting everyone (cf. Renfrew 1984, p. 366). It is difficult to explain this phenomenon even from a purely archaeological context. Often there is merely a documenting of discontinuity. Archaeologists have often resorted to foreign invasion, natural cataclysm etc. to account for the disappearance of highly structured societies. In any society one would expect a continuation of some of the features of the previous state, though in a less marked or distinct way. The development of peer polities, in which the collapse of central power is followed by competition among various small power groups inside the former territory and on its borders, should be seen in this way (Renfrew 1986, pp. 1–18).

Collapse is regarded in this work as a relative term referring to a political process. A society has collapsed when ‘it displays a rapid, significant loss of an established level of socio political complexity’ (Tainter 1988, p. 4). Collapse is perceived in a decadal rather than long term basis. When the latter occurs, this is considered as a weakness or decline. The archaeological correlates of collapse should be seen in a lower degree of stratification and social differentiation, less economic and occupational specialisation particularly of territories, loss or absence of centralised economic and political control etc. Tainter (1988, p. 4) points out that the list is endless.

Collapse should not be only posited in areas of complex societies. This process can also be seen in other, less complex societies. If development of complexity is regarded as a continuous variable (see above), so should political collapse which is a process of decline in complexity (Tainter 1988, p. 31).

1.6.3 Models of state formation and development in the context of the Mutapa state

Models explaining state formation in northern Zimbabwe can be grouped conveniently into two: historical and anthropological. Historical models mostly derive from oral traditions recorded in some Portuguese written sources, while anthropological models are based on the models of Shona chieftaincy and the succession system.

The historical models

A number of hypotheses have been advanced to explain the origins of the Mutapa state. Oral traditions say there was a migration from the south-central grassland areas (called Guruwua). The migrating parties are said to have been searching for salt, located somewhere in the Dande area of the Zambezi basin (Abraham 1962). The founders of the Mutapa state who formed part of this migration process, are said to have embarked on conquest of the northern end of the Zimbabwe plateau, and managed to subdue the areas of Dande, Chidima, the Tonga and Tavara country of the Lower Zambezi, and Manyaika and Barwe to the east. This migration from the south is seen in the context of a general process of the disintegration of Great Zimbabwe as a site and as a centre of a powerful state (cf. Abraham 1959, 1964; Garlake 1973a; Marks & Gray 1975).

Some stone structures in the area formerly under the Mutapa state have been examined in the context of settlement hierarchies to advance the same hypothesis. The low level of stone building in the area, coupled with the decline in the quality of workmanship on the sites, is regarded by some scholars as signifying societal heterogeneity and loss of complexity within the Zimbabwe state (Huffman 1986).

This theory of origin might be examined from at least two angles. First the theory considers the Mutapa state as a product of coercion. Fried (1967) has suggested that coercion is an essential process in state formation. Secondly, it considers the Mutapa state as a peer (less complex) polity in relation to the preceding Zimbabwe state. The ‘peer’ of Mutapa would have been Turwa, to the south-west.

Another theory stresses trade as the stimulus to state formation in northern Zimbabwe. The break away groups from Great Zimbabwe are said to have been attracted to
The Mutapa state is viewed as the northern part of the 3-cluster model of the Zimbabwe state, synonymous with the Great Zimbabwe tradition. The 3-cluster model of the Zimbabwe state represents the actual, historically and archaeologically documented political divisions of the state formations on the Zimbabwe plateau. The southern cluster comprise mainly the developments around the site of Great Zimbabwe. The western cluster constitutes the area of the Torwa state.

Sinclair used ethnohistorically derived models of Shona chieftaincy and succession to explain the aspects of political organisation of the Zimbabwe state. The basic assumption is that the structural principles of chiefly succession which have survived (despite the colonial situation) are relevant for interpreting a part of the range of past variation.

Territorial analogies of nyika (region), dunhu (ward), and musha (village) were applied to the Zimbabwe state. The clusters of sites generated by the D-curve method and the Fuzzy Set Cluster Analysis (Sinclair 1987, Ch. 7, pp. 119–42) were interpreted as territorial units (nyika), and the stone walled enclosures forming those clusters as chiefly residences or courts. This observation is consistent with the evidence from Portuguese written sources which mention some stone enclosures as state residencies presumably for early Mutapas.

The analogies used have their own limitations and Sinclair (1987, p. 161) is quick to point out that there is also the possibility that the clusters may represent elite groupings and sub-units or provinces of a larger scale state organisation. The stone buildings would then represent an extension of central state authority.

Sinclair’s model agrees with the observation that the stone wall enclosures occur repeatedly in well defined territorial units representing a time framework of about 200 years:

On the basis of the model of chiefly succession … the stone enclosures may be chiefly courts which were occupied for the duration of single reigns and then abandoned. New enclosures might have been built in other territorial sub-units or wards as the office of the chieftainship circulated amongst different houses. This would account, particularly in the case of a short reign, for the striking lack of archaeological evidence for extended occupation at some Zimbabwe sites. The return to chiefly office to a ward might account for extensive deposits. This interpretation has the further benefit of stressing the diachronic nature of the clusters…. (Sinclair 1987, p. 156)
1.7 Organisation of this work

A general physiography of northern Zimbabwe is presented in Chapter 2. It is important to observe how people living in the past were assisted or hindered by some of the environmental variables presented. A general settlement model is built up and related to the archaeological evidence presented in subsequent chapters.

In Chapter 3 historical archaeology is defined and examples of related projects in Southern Africa outlined to see how the scholars approached archaeological issues linking the 'remote' prehistoric past with the 'present', historical period. The importance of archaeology in the understanding of historical states is stressed.

Chapter 4 outlines previous work done in the research area and introduces the survey data. A survey of trading sites found in northern Zimbabwe is presented in Chapter 5 together with detailed on-site investigations. Cartographic data is presented in Chapter 6. The bulk of the data, especially ceramics, is analysed in Chapter 7. The archaeological and cartographic evidence from the research area presented in Chapters 4–6 also permits a closer examination of some of the social theories pertaining to decline of cultural complexity in northern Zimbabwe. If it is assumed that the Mutapa state represented the spread of the Great Zimbabwe tradition in northern Zimbabwe, it would be important to examine the archaeological evidence relating to such transformation, and also relating to the decline of the Mutapa state. A number of questions posed in the present chapter and some hypotheses put forward by researchers who have worked in northern Zimbabwe have been re-examined in Chapter 8 in the light of recent archaeological evidence. The changes that probably took place are given in Chapter 9 as alternative explanations in addition to an in depth discussion of the archaeological correlates of the Mutapa state.
2. PHYSIOGRAPHY OF NORTHERN ZIMBABWE: THE LANDSCAPE OF THE MUTAPA STATE

2.1 Location and size

Northern Zimbabwe comprises the northern extension of the Zimbabwe plateau, a belt of highland area over 1000 m above sea level, and adjacent middle and lowveld areas. The Zambezi River defines the northern limits while to the east and west, the Mazowe-Ruonya and the Manyame-Angwa valleys form natural boundaries. The southern boundary is indistinct but the sources of the Manyame, Mazowe and Ruonya may set appropriate limits. The total area covered is about 60,000 km² (see Map 3). It lies approximately between 16° and 18° South latitude and 30 and 33° degrees East longitude. It is part of South-Central Africa (see Birmingham 1983, p. 2), sometimes regarded as the Indian Ocean zone, the lowland region that extends inland from the ocean on either side of the Zambezi river (Smith 1983, p. 205). The Mutapa state occupied parts of this territory since its inception sometime before the 16th century. As pointed out in Chapter 1 there are still disagreements among historians as to the area the state controlled at any one time, and researchers are unclear on which archaeological sites may be attributed to it.

This chapter describes the environment of northern Zimbabwe, and attempts to present a model of how humans might have interacted with it during the historical period. In order to understand the total (diachronic and synchronic) settlement process in the region, it is important to outline some of the physiographic units and then give a general model of site location. At each level

Map 3: A general map of northern Zimbabwe, showing the drainage and relief.
of discussion the environmental variables are focussed on the area selected for detailed study. An historical framework is presented showing the dynamics of the areas under the control and where the authority of the Mutapa rulers was acknowledged. It is essential to understand the cultural (historical) landscape of the Mutapa state in relation to the data given in subsequent chapters.

2.2 Relief and drainage

The relief of Zimbabwe is divided into three basic units, the highveld, the middleveld and the lowveld, and all these are represented in northern Zimbabwe. The highveld comprises areas above 1200 m above sea level. The topography is rolling plains interrupted by hills, often with bare rock surfaces, and mountain ranges such as the Nyurwani and Manyame to the west (see Map 3). The land rises to 1800 m towards the central watershed. These environments have always been settled intensively probably since the first millennium AD and migrations have been reported in oral traditions as emanating from this and adjacent areas (cf. Beach 1980; Mudenge 1988). The middleveld was intensively settled probably from the 14th century but historians have demonstrated that population groups shifted from place to place as determined by natural resources and other factors such as human conflict.

The middleveld approximately covers areas between 900 and 1200 m above sea level but this distinction may be blurred by local topography. The Zambezi escarpment is the northern border of this plateau surface. The Munyuru mountains trending east-west form the highest points of the escarpment with peaks 1207 m and 1600 m above sea level. The lowveld lies between 300 and 600 m above sea level. Land is generally flat, hence the name dande, but occasional hills do occur. From Mukumbura to the north east corner of the country, including the Mazowe valley and adjacent areas as far as the northern parts of the Eastern Highlands, the altitude increases to 900 m.

Three major drainage basins in northern Zimbabwe are part of the wider catchment area of the Zambezi River. These are the Manyame-Angwa basin, the Musengezi-Mukumbura river systems and the Mazowe-Ruya basin. The drainage pattern on the plateau areas of the highveld and middleveld is apparently dendritic but some limited areas show a trellis rectangular pattern as dictated by the underlying geology. In the lowveld area the rivers form

Map 4. Relief map of the research area showing the plains to the north and the mountains to the south.
a dendritic drainage pattern since they drain an area of uniform geology. The Mazowe, Ruya, Musengezi, Utete, Manyame and Angwa rivers are important in that they provided natural routes into the middleveld and highveld interior. Communication between the lowveld and the areas above the escarpment was not always easy and direct. Afro-Portuguese trading centres in the research area reflect this in that they follow a broad linear form, dictated by the major river systems passing through the gold belts.

The Mukaradzi and Gwetera rivers in the research area define roughly a rugged hilly/mountainous terrain to the south (Plate 1) from a gently rolling and undulating country to the north (see Map 4; Plate 2). These mountains vary in height from 1000 to 1500 m above sea level, rising from a height of about 900 m above the general level of the ground. Mt Fura has the highest peak (1508 m), but other peaks are comparatively high.

2.3 Temperature and precipitation

Zimbabwe experiences cool and dry winters and hot and wet summers. Most rains fall from November to mid or late March. The rain season ends in April or mid May and is followed by a cool season lasting to August. The dry summer season then follows until the rains fall in November. The rainfall and temperature conditions are greatly influenced by relief and altitude. Three temperature belts can be defined on the basis of altitude. These broadly follow the basic physical units of relief discussed above.

The cool region covers the highest part of the highveld especially the Eastern Highlands. Average annual temperatures are 18° Celsius or less. The rest of the highveld and most of the middleveld is warm to hot. The average annual temperatures in these regions are between 18 and 22° Celsius. The Zambezi Basin, the Escarpment area and other parts of the middleveld lie in the hot region of the country with average temperatures of between 22 and 30° Celsius recorded annually. Mount Darwin in the research area, for example, records warm to hot temperatures, and October and November are the hottest months with temperatures rising to over 30° Celsius.

The rainfall is received in the highveld ranges from 800 to 1000 mm in the north-west and Harare areas but increases to 1200 mm in the Eastern Highlands. The adjacent middleveld which in which the research area is situated and the Zambezi Escarpment have an annual rainfall regime ranging from 600 to 800 mm. The Zambezi Valley is comparatively drier with the lower Ruya-
Plate 2. Baranda, view from north.

Mazowe-Ruenya basins receiving less than 600 mm. In exceptional years however some areas receive much higher rainfall amounts. Mt Darwin in the research area sometimes receives amounts in excess of 800 mm. Periodic droughts are common, caused by long term variations of temperature and rainfall.

2.4 Geology

The oldest rocks in northern Zimbabwe belong to the Shamvaian group of the Precambrian. These comprise various schist belts, gold belts, and granites and gneisses which encompass the former (see The Geology Map of Zimbabwe 1977; King 1978). Their northern limit is the Zambezi Escarpment, where they give way to the Karoo sediments of the Zambezi valley. The Shamvaian group has a great mineral potential as gold and copper have led to the exploration of thousands of mines in the area since prehistoric times (cf. Garlake 1970b).

The geology of the research area is described by Leitner (1974). It is largely characterised by intrusive granites in the south, the schist faulted ridges in the middle, the gneiss plain with intrusive dolerite hills to the north and rocks of other groups to the east (see Map 5). The plain has a great agricultural potential. The gneiss and the granite rocks are useful building material, and these gave rise to the construction of stone structures either as habitation sites or fortifications in the past. The landscape has a great mineral potential for it is associated with the gold belt. The gold extracted from the Mazowe-Ruya and Angwa basins (see Map 6) was largely responsible for bringing northern Zimbabwe into a much wider trading network of the Indian Ocean zone.

The soils are varied reflecting the underlying geology (see FAO-unesco Soil Map of the World 1988, 1990). The dominant soils of the region are Ferric Luvisols (LVf). The gold belt has deep reddish brown granular clays formed on mafic rocks. These are Rhodic Nitisols (NTr). Both the Ferric Luvisols and Nitisols are cultivable and support a range of woodland resources. Ferric Luvisols formed the majority of cultivable soils on the Zimbabwe plateau because of their good physical properties, great depth, a high permeability and stable microstructure (Driessen & Duda 1989, pp. 242–3). They are also well drained and easy to work. A wide variety of annual and perennial crops are grown on these soils by peasant and commercial farmers today. The soils of the research area have not been mapped in detail but reflect this variability at the micro scale.
Map 5. The geology of the research area.

Map 6. The gold producing areas of northern Zimbabwe.
2.5 Vegetation: the miombo woodlands

The escarpment is mainly dominated by deciduous Miombo Savanna Woodland (Brachystegia spiciformis-Hubermannia globiflora (mutusasa-mutondo), Brachystegia boehmii (mupfuti) and B. alleni (Wild & Fernandes 1967, p. 23). This contrasts with deciduous thickets, a wide variety of Combophora and Combretum species and mopane tree savanna (Colophospermum mopane) found in the Zambezi Valley (Wild & Fernandes 1967, p. 14). The miombo woodland is associated with a sparse grass cover which includes the genera Eragrostis, Aristida, Hyparrhenia and Heteropogon (Rattray 1960; Wild & Fernandes 1967, p. 29; Chippindall & Crook 1976; Lightfoot 1975; Drummond pers. comm.). It dominates the tree cover of almost all the hills and mountains over the 900 m contour in the whole of the research area.

The past dynamics of the miombo woodlands have been documented in Zaire and Zambia (Malaisse 1978, pp. 589–606). The degree to which man has interacted with this woodland environment in northern Zimbabwe has not yet been studied but it is supposed that the relationship is close and of much longer term than the scope of this research.

A wide variety of tree and grass species were used as raw materials for house construction. The charcoal from the hardwoods provided the daily fuel energy requirements, and also industrial processes like iron smelting. A number of traditional woodwork crafts were practised in these woodlands. Woodland environments also played a major part in the local economy in that they provided wildlife which was hunted for meat, skin and ivory and gathered for honey. Early Portuguese accounts are vivid on hunting skills employed by the locals, the range of animals hunted and the composition of the wildlife, particularly in the Zambezi lowlands.

Grasses and some tree species have a varied value as livestock feed and it is important to consider how the Mutapa state maintained its wooded grassland environment in a productive condition. Successional changes in vegetation in the research area may be owing to human impact on the landscape, and some factors such as fire, grazing pressure, tree clearing and cultivation are important. Grazing and trampling of the same areas continuously at the same time every year by large concentrations of domestic stock or game results in degradation of grass cover (see Rattray 1960, p. 23).

The research area is basically "mixed veld", the transitional area between the souveld of the higher plateau and sweetveld of the low altitude areas. As has been found in the southern edge of the Zimbabwe plateau (Sinclair 1987), parts of the research area are sensitive environmentally with regards to grazing. This necessitates movement of cattle. Crucial in this exercise is the availability of palatable grazing especially during the dry season. The composition and digestibility of veld changes seasonally. The quantity and quality of food which animals eat is probably the most important factor affecting the viability of any livestock enterprise (Topps & Oliver 1978, p. 9). In winter cattle need a protein rich concentrate which stimulates appetite. The perennial Hyparrhenia species in the higher parts of the plateau contain negligible amounts of digestive protein from June to October. These grasses are "sourveld". Around the edges of the plateau and in the Zambezi Valley is "sweetveld" which remains palatable for most of the year and retains its nutritive value during the dry season. However the grass cover associated with sweetveld is sparse, and has a low carrying capacity inhibiting continuous grazing.

2.6 The cultural landscape of northern Zimbabwe with particular reference to the research area

Vincent & Thomas (1960) divided the country of Zimbabwe into five agro-ecological zones, defined on the basis of farming usage, rainfall, mean annual temperature, topography and vegetation. The survey regarded water as a primary constraint on agricultural production. The regions were defined on the basis of degree of adequacy and efficiency of rainfall. The secondary constraint was relief. Northern Zimbabwe falls largely into agro-ecological zone 2, and given the physiographic data outlined above, would be suitable for intensive farming. The adjacent drier and slightly warmer areas fall into zone 3, largely suited for semi intensive farming agriculture. Dande and the Zambezi lowlands lie in zones 4 and 5 respectively, and these areas are of marginal agricultural value, owing to low erratic rainfall and droughts. On the basis of the higher temperatures, poor rainfall and topography they would be suitable for semi-extensive and extensive farming. Whitlow (1980a, 1980b, 1980c) later conducted a national agricultural potential survey based on rainfall amount and variability, soil characteristics, slopes and secondary terrain factors. The results are valuable with regards to the present day status of land suitability and the constraints imposed by the environment on communal agriculture.

Northern Zimbabwe is treated in this work as a cultural landscape interacting with, and modified by past humans (see Welinder 1988). The archaeological data from the area is evidence of a past cultural landscape created by interaction between humans and their environment. This approach requires adequate environmental data to understand the complex interaction between the landscape, the climate and the humans. At present available data can only be applied at a theoretical or continen-
tal level (cf. Street-Perrot et al. 1989; Bolin 1991; Harrison 1991; Sinclair 1991a). Available environmental data are inadequate to address this scenario in northern Zimbabwe at least within the last 2000 years (cf. Deacon & Lancaster 1988; Livingstone 1971). Another problem for northern Zimbabwe is that climate does not seem to have been a factor in determining settlement location at least during the historical period. It would be expected however, that significant climatic changes altered patterns of settlement in the area although we have no proof of this.

The most important economic activities found within these units of landscape today are crop farming, pastoralism, mining and to a limited extent, hunting and metal working. Present day settlements are located in the sandy granite and gneiss plains of the Chesa and Kandeeya communal areas. The heavy reddish-brown soils have only been settled recently by commercial and resettlement farmers. Gold mining and washing is carried out in the river valleys, the Mazowe, Ruya and some of their tributaries being worked intensively. The mountains to the south have generally been devoid of settlements with the exception of mining villages set up in the 1920s and 1930s. The Mufurudzi safari area which occupies an area within these mountains is home to many wild animals, but it is no longer a hunting ground as it is now a designated wildlife reserve (see Map 7).

The annual agricultural cycle begins with the first summer rains of October/November which provide enough moisture to the ground to permit both plough and hoe agriculture. The increased rains of December and January inundate the rivers and activities such as gold mining and washing cease completely. Cattle grazing takes place within the vlei areas near the villages until the close of the agricultural season. In autumn and winter, with a return to dry conditions, people engage in other activities. Prominent elders organise hunting teams and (although no longer permitted) go into the Mufurudzi safari area for a duration of 1–2 weeks.

Some families travel to the gold mining areas and open up shafts and tunnels with simple tools. A mining village may grow to accommodate 50–100 miners and their families in a single season. Once a week, gold merchants from established mining concerns come to these villages to buy the unprocessed gold. Although they have obtained gov-
The mining areas probably attracted many people during the winter and summer months when there was a lull in the agricultural activities. The description given above may be analogous to how the mining settlements operated during the historical period, and how some settlements were integrated into the wider regional exchange network. An overriding factor was probably the years of prolonged drought and environmental disasters which limited agricultural and pastoral pursuits. In these circumstances the people may have decided to continue mining. Some trading settlements may have attained a permanent status as a result.

The mountains probably imposed an irregular pattern on the total settlement structure. Only lower slopes are used because they are easily accessible. There are no villages sited on mountain summits or slopes as these are too steep or broken to allow settlement. Even terracing is not possible as it would only retain a limited area of flat surface which would not permit the construction of substantial housing.

Portuguese written sources make direct reference to the agricultural life, subsistence and the general environmental conditions during the 16th and the 17th century, and may be used to substantiate some of the models on economy and settlement proposed above. Most of the sources refer to the lower Zambezi basin but some aspects cover the Zimbabwe plateau (see for example, dos Santos' *Ethiopia Oriental*, Ch. VIII. In *Theal* 1898–1903 (vol. 3), p. 268 (on soil variability); Father André Fernandes' letters to India which give details on agriculture, wildlife and riverine resources of the Tonga living in lower Zambezi valley (In *Theal* 1898–1903 (vol. 2), pp. 61–8; de Goes who gives an outline of the resources found in the Mutapa state (In *Theal* 1898–1903 (vol. 3), p. 129). Similar information is reported by João de Barros, who was writing his *Decade* almost at the same time (*Theal* 1898–1903 (vol. 4), p. 266). There are also numerous references to trade and gold mining in the state.

2.7 The spatial and demographic parameters

The maximum territorial extent of the Mutapa state is a subject of considerable disagreement (see for example Randles 1975; Beach 1980; da Costa 1980; Mudenge 1988). What is clear however is that by the 18th century, the Mutapa rulers controlled less territory than before. The ecological correlation with its territorial extent has not been done, because of the dynamics of state boundaries. The presence of a defined territory is one of the main characteristics of a state (Claessen 1978, p. 537). According to his definition, a state is a corporate social group with a territory occupied by people from different clans, or family groups, recognizing the presence of some sort
of political unity extending to the boundaries of that territory. We should expect the Mutapa state to be divided politically into territorial segments with regional or local functionaries at their head (cf. Mudenge 1988, Ch. 5). In most cases natural boundaries delimit the territorial extent of any state.

There is evidence to show that the authority of the Mutapa state was felt over a very large area. I first examine the list of territories given by Antonio Fernandes to Gasper Veloso, clerk of the factory of Mozambique in 1512. Where possible, and if some of the names are still used today, they are indicated within square bracket after the old name. The kings or territories mentioned are Mucamdira (near Sofala), Mazira, Quyomgwe, Embya, Ynhacuene (controlled by the captain major of the Mutapa, with vast lands and trading places), Mauquita [Manyika], Amococe, Barue [Barwe], Betomnga, Ynhaparapa, Bococe, Maufo, Embire, Butua (regarded as independent), Mombara [Mbaro of the Hungwe plateau], Ynhoqua (at war with the Mutapa), Moziba (in the Zambezi valley), Quitenge [Chiteve] (which borders with Batonga [Tonga] and Baro (near Batongwa) (da Silva Rego & Baxter 1962–1975) (vol. 3), pp. 181–9).

It is clear from this list that the centre of political power was located somewhere in the plateau. Ynhoquena might refer to the present day Ngaguwe, a tributary of the Mazowe. The status of, and boundaries marking, the peripheral provinces is not clear, but some, such as Butua in south-western Zimbabwe, were at war with the Mutapa state, at least by the turn of the fifteenth century. Moba-ra was definitely a peripheral province judging from Fernandes’ account:

... the king of Moba-ra lies seven days journey from the king of Monomotapa. In his land there is much ... copper and it is from there that copper is brought to Monomotapa in loaves like ours.... A big river lies between this king and the king of Monomotapa which is crossed in almadas when they come to sell merchandise; and they set it ashore and cross again to the other side, and then come the Moors or kaffirs who take the merchandise if it pleases them and leave there the cloth and whatever other merchandise they carry and then come the men ... and if they are pleased with the merchandise the others have left they take it; if they are not pleased they go away and leave it until more is put there or other is brought, since they understand each other by signs.... (da Silva Rego & Baxter 1962–1975 (vol. 3), p. 185)

This is a clear example of silent trade. The great river mentioned is either the Zambezi, Manyame or the Angwa, and Fernandes does not suggest that the authority of the Mutapa exceeded this point to the western part of the state.

Friar João dos Santos, writing at close of the 16th century presents a full description of the Mutapa state and its break-away peripheral provinces. We are told that the kingdom of Monomotapa is situated in the lands called Mocaranga ... all of which lands formerly belonged to the empire of Monomotapa, and at present are divided into four kingdoms, viz. the kingdom which at present belongs to Monomotapa, the kingdom of Quitove, the kingdom of Sedanda, and that of Tshikanga. This division was made by an emperor Monomotapa, who not wishing to, or not being able to govern such distant lands, made three of his sons governors thereof, sending one named Quitove to govern the lands extending along the river of Sofala, another named Sedanda to govern the lands traversed by the river Sabi ... and the third, named Tshikanga, he sent to govern the lands of Manica, where there are very extensive gold mines. (Theal 1898–1903 (vol. 7), p. 273)

The three territories later refused to acknowledge the authority of the Mutapa. João de Barros notes however that despite the loss of these three large territories, the Mutapa rulers were left in charge of an extensive territory bigger than the combined total area of the former. This "vast kingdom" was said to be more than two hundred leagues in length, and almost as much in breadth. On the north-west side it borders on the lands of another very powerful king, with whom they are frequent wars. He is called Abutua, and his kingdom bears the same name.... (p. 274)

The northern and eastern boundaries of the state are also given by de Barros, although his geographical coordinates are incorrect:

On the eastern [meaning northern] side Monomotapa is bounded by the river Zambezi, which is called by the Kafir vassals of Monomotapa Empando, which means a rebel against the king, because they say that if the river did not run through that part Monomotapa would be lord of other lands lying on the other side of the river, which he cannot reach for want of boats. On the south-eastern side this kingdom extends to the Indian ocean, where it forms a tongue of land only ten or twelve leagues in breadth between the rivers Luabo and Tendancula, as the lands which extend to the south as far as the river Inhambane are divided among the three rebel kings [Quitove, Tshikanga and Sedanda].... (p. 274)

Bocarro writing sometime after 1631 (Theal 1898–1903 (vol. 7), pp. 355–61) gave a listing of the kingdoms and lordships subject to the Monomotapa ... the dominion of which is divided among petty kings and other lords with fewer vassals who are called inkosis or fumos....
The following is a full list of the kingdoms: Mongaz [Mungazi], Baroe [Barwe], Manica [Manyika], Maungo [Maungwe], Zimbu [?Zvimba] (which has on the southern side the kingdom of Butua and on the north side the lands of Urupande), Chigue, Chiria, Chidima, Inhabanzo (in the Zambezi valley, controlled by the local Maximira and Diogo Simões Madeira), Chiruvia, Condessa (Mocomaia), Daburia (Ningomoxa, second person of the Mutapa and his governor), Macurube (Antora, Mutapa's uncle), Mangussy, the kingdom of Inhacanembwa (?Kanyemba), great wife of Monomotapa, Antatura, the kingdom of Chikuma, Choe, Chungue, Diza, Romba, Russiai, Chirao (?Chirau).

Bocarro mentions that there were many other dominions which are not called kingdoms. His full list covers most of the territories found on the northern edge of the Zimbabwe plateau, including parts of the Zambezi valley where political control was achieved by arrangement with local rulers and the Portuguese community there. The south-western margins of this state seem not to exceed the area beyond the Mupure River.

Manuel de Faria e Sousa referring to a period before 1640 says that:

The empire of Monomotapa from the mouth of Cuama in the east runs two hundred and fifty leagues, is divided by the great river Zambezi, which falls into that of Chiri, running through the country of Bororo, where there are many other large rivers, and on their banks many kings, some absolute, some subjects of the Monomotapa. The greatest of the first is Mongas, bordering on Sena and the Zambezi... (Theal 1898–1903 (vol. 1), p. 22).

Three break away kingdoms are given as

... Quitieve, Sabaanda, and Chichanga, this last the most powerful, as possessing the mines of Manchica, Butua and others. (p. 23)

He later adds that the

... empire is divided into twenty-five kingdoms, which are Mongas, Baroe, Manica, Boesa, Macingo, Remo, Chique, Chiria, Chidima, Boquizi, Inhakanzo, Chiruvia, Condessa, Daburia, Macurube, Mungussi, Anturaza, Chove, Chungwe, Diza, Romba, Russiai, Chirao, Mocaranga, and Remo de Beza. There are many lordships that have not the title of kings. (p. 23)

Manuel de Faria e Sousa's list is probably copied from Bocarro. The importance of this list is that it mentions the loss of the Mutapa's authority in the eastern highlands of the plateau, and on the Mozambican coastal plain. There can be little doubt therefore on the territorial extent of the 16th and 17th century Mutapa state. The dynamics of this territory will be highlighted further when we discuss in greater detail the events that led to the state losing control of the plateau area in later chapters. The demographic patterns of the state have not been recorded save for state centres. It is not possible to give a precise estimate of population density of the whole area covered by the Mutapa state. This is a factor that should be related to the subsistence patterns. If we assume that not all available land in terms of crop cultivation and cattle grazing was in use, and an uncontrolled access to mining and other export oriented resources, then the Mutapa state will fall into Claessen's (1978, pp. 539–40) category of a 'low' density population. This category is still a vague statement as it is not an absolute qualification.

On the basis of the 1911 census, Beach (1984b) observed that the population distribution of the Zimbabwe plateau was uneven. For northern Zimbabwe he noted that the majority of the population lived east of the Manyan-Angwa river system, and on the basis of the distribution maps of Sinclair & Lundmark (1984) and Garlake's (1978) map of regional centres, concluded that the same pattern could be discerned for the Early Iron Age and the early part of the later Iron Age (Beach 1984b, pp. 4–5). The distribution pattern of the Great Zimbabwe tradition sites from the mid 13th century onwards reflect the same pattern. This pattern may be accounted for by the much varied ecology within each site territory east of the watershed as compared to the west.

The 1911 census figures for the districts of Mt Darwin, Mazowe, Goromonzi, Murehwa, Mutoko and Mankonde (northern and north eastern Zimbabwe) slightly exceeded 124,000. The areas covered by these districts roughly coincide with the plateau area of the Mutapa state. The only exception may be part of Mankonde west of Manyan-Angwa rivers. It is not clear whether the figures include the area below the Zambezi Escarpment (the mid Zambezi valley). Certainly, parts of the Zambezi valley in Mozambique were not covered, so much that the figure of 124,000 given above is a slight underestimate for the total population of northern and north-eastern Zimbabwe from the watershed to the Zambezi valley, and from the Manyan in the west to the Rueny in the east. If we calculate using a 6.1–7.45% drop in population every 10 years from 1911, we would get a population of between 5100 and 11400 around 1500 AD, and 11000 to 17600 around 1600 AD.

The estimate of the size of the Mutapa's army at about 100,000 by Fr Monclaro was therefore an exaggeration. Portuguese records give the impression of a much larger population in the Mutapa state (Beach 1984b, p. 7). If this was true, then a crop in the population would be accounted for by the Portuguese activities in the interior, the prazo system, etc, which led to a general depopula-
tion of the region. Beach (1980, Ch. 8) talks of migrations or movements of people to the south central parts of the country during the late 17th century. The ruling Mutapas, for example Mukombwe, tried to initiate a policy of resettlement of new groups of people in the plateau area of the Mutapa state. The Buda (see Chapter 8) must be understood in this context.

2.8 Overview

This work attempts to address four research problems outlined in Chapter 1. The first problem, that of cultural succession, will be addressed by examining the ‘raw’ archaeological data, mostly ceramics and architecture. To relate the archaeological material to the landscape, we have to use units of analyses that are meaningful to the society we want to study. The basic economic and social unit of the Shona is the household (imba), through village (musha) and ward (dunhu) to territory (nyika) (cf. Holcomman 1952, Ch. 1; Beach 1984a, pp. 20–3; Mudenge 1988, pp. 8–20) and these provide interpretive data for settlement dynamics Zimbabwe (see Sinclair 1987). It will be argued that during the historical period, this pattern was altered by the introduction of merchant capital, and in northern Zimbabwe this contributed to the decline of the Mutapa state.

The second problem raised in Chapter 1 concerns the relationship between the Great Zimbabwe tradition and the historical Mutapa state. The decline in the prosperity attained at Great Zimbabwe at some stage before the 16th century coincides, albeit circumstantially, with the development of two geographical centres of political power. In the south-western grassland parts of the plateau, developed the Torwa state centred at Khami, and around the northern plateau margins the Mutapa state. No satisfactory explanation for this development has been advanced (cf. Huffman 1972a; Garlake 1973a, 1978; Sinclair 1987) but studies of present day land use patterns and demographic trends in south-central Zimbabwe show that the area cannot sustain a heavy population without seriously upsetting the agricultural and grazing potential. In addition the land suitable for agriculture around Great Zimbabwe is limited, as the site falls into the south-west to north-east trending crescent shaped belt of granite inlets (cf. Whitlow 1980a). The agricultural potential of the area is generally poor as this area lies at the edge of the zone of dryland cropping (cf. Whitlow 1980b). It therefore appears that the decline of Great Zimbabwe and the rise of parallel state systems elsewhere on the plateau might be explained, at least in part in relation to the developments within agro-ecological zones 2 and the 3.

The zimbabwe (or state residences) have been interpreted as shifting foci of political power and building, and clusters over time (Sinclair 1987). The constellation of Great Zimbabwe tradition sites in northern Zimbabwe may represent the Mutapa state, and this work examines a subset of this area, at the micro-level.

A general point may be raised at this point to the effect that significant cultural changes in the Zimbabwean plateau and adjacent areas may be associated with environmental stress. This is apparent when we examine the preceding Great Zimbabwe and the Mapungubwe state systems. By at least the late 15th century northern Zimbabwe was offering better agricultural and commercial opportunities than the south central parts of the plateau, while in the south-west the area of the Torwa state seems to have been stronger environmentally in supporting a viable pastoral economy.

Another question this work will address relates to Afro-Portuguese interaction, and how such evidence in the archaeological record can help towards the understanding of the Mutapa state. The coming of merchant capital to south-central Africa in the 16th century is an event of a global character. We should expect a change in the complex character of the state systems affected by this ‘world system’ in the process of adapting to external demands. As indicated in Chapter 1, caution should be exercised here as we may lose sight of local developments, such as the importance of the agricultural base of the economy and the tributary system in the evolution of the state. It is the effect of merchant capital of these sectors of production that is crucial. The resulting process of interaction between the local communities and the outsiders is valuable in understanding the process of near or total system collapse as perceived by Renfrew (1984) and Tainter (1988). We should not hesitate to use events of a global character to understand this phenomenon.
3. THE ANALYTICAL CONTEXT OF LATER PERIODS: PERSPECTIVES IN HISTORICAL ARCHAEOLOGY

3.1 Introduction

The environmental discussion presented in the previous chapter is accompanied here by a survey of the archaeological issues related to the later (historical) periods in Southern Africa. Most state formation and developmental processes are better understood within the context of historical archaeology. Relatively few projects of this kind have been carried out in the region, but enough information exists to produce an outline of the concepts used, and the historical and theoretical standpoints taken. Historical archaeology in the region should focus on historical entities, whose material cultures relate to the recent past and are directly connected with current events. In addition, in order to understand Afro-Portuguese interaction during the historical period there is need to understand the impact generated by the introduction of merchant capital.

3.2 Definition

Most definitions of historical archaeology proposed by a number of American scholars exhibit severe limitations when applied in a Southern African context. Noél Hume (1969, p. 12) defines historical archaeology as ‘the study of material remains from both the remote and recent past in relationship to documentary history and the stratigraphy of the ground in which they are found’. This definition places strong emphasis on documentary history. Schuyler (1970, p. 88; 1978, p. 28) defines ‘Historic Sites Archaeology’ as ‘the study of the material manifestation of the expansion of European culture into the non-European world starting in the 15th century and ending with industrialisation or the present depending on local conditions’. This definition has been criticised by Posnansky & Decorse (1986, p. 1) as only representing a one sided view of contact, and fails to explain the impact (accommodations and reactions) on the indigenous populations. South (1977, p. 25) defines historical archaeology as ‘archaeology carried out on sites of the historic period’, while Deetz (1985, p. 27) limits it to the cultural remains of literate societies. The problems encountered with this definition is that most African societies were non-literate, although some were referred to in written sources.

For example, the earliest written sources on the Zimbabwe plateau were produced by the Portuguese at the beginning of the 16th century when they came into contact with the Mutapa state. The Portuguese were initially based on the Mozambican coast and their reports about the interior are second hand information, and in some instances represent isolated accounts of the societies they relate to. The term ‘prehistoric’ has been suggested by Mauny (quoted in Posnansky & Decorse 1986, p. 2) but applying it within the context of the Zimbabwe plateau would be difficult as Portuguese movement into the interior was gradual over the centuries.

The inadequacy of written sources in providing a full insight on the societies under study has led some scholars to use oral traditions in their definitions of historical archaeology (cf. Schmidt 1977, 1983). Schmidt’s definition covers all the periods of the farming communities of the last two millennia, and regards oral traditions as a valid ‘document’ in the absence of written sources. This is an extremist structuralist perspective, and it is inappropriate to argue for a 2000 year continuity of iron working on the basis of 20th century oral traditions relating to events in the 15th century. This definition is not accepted here because it is too impractical and controversial.

The Society for Historical Archaeology (See Newsletter, Autumn 1990) defines historical archaeology as the study of remains of past societies largely with the help of some historical evidence. It embraces the interests of a diverse group of scholars representing the disciplines of archaeology, anthropology, history, geography and even folklore. This definition allows for the study of topical issues such as antecedents to European expansion and colonisation, the ships of ‘discovery’, ‘landings’, slavery and slave trade, and plantation archaeology. In southern Africa ‘landings’ by the English on the Namib coast (Kinahan 1991; Kinahan 1992), the Dutch at the Cape, and the Portuguese at Sofala (Theal 1898–1903 (vol. 7), pp. 461 ff), wrecks along the south (cf. Theal 1898–1903 (vol. 8), pp. 1–361; Posnansky & Decorse 1986, p. 8) and eastern African coast (Sassoon 1981, p. 97) have been documented. Archaeological evidence for slavery may be examined on the Chikunda society and the prazo system in the lower Zambezi valley. Plantation archaeology may be related to the East African island of Zanzibar, which also experienced slavery and slave trade.
during the 19th century. However, this 'fragmented' approach to the study of later periods in African archaeology narrows the scope of the processes and issues requiring investigation.

Posnansky and Decorse (1986, p. 2) employ a definition which operates within a general historical framework rather than the social cultural background. They see historical archaeology as 'archaeology undertaken in periods or for areas in which the principal source of contextual information is provided by documentary evidence'. This definition does not apply to the Zimbabwe plateau as oral history, for example, has been collected to the extent that it can be applied to verify the information in the Portuguese written sources.

Historical archaeology is defined here as the study of sites which can be interpreted with the aid of historical evidence such as written sources, oral traditions and historically datable imported artefacts. This definition may be strengthened by adding an anthropological component to it. Anthropological models have been used in Zimbabwe to interpret the dynamics of the Great Zimbabwe state (Sinclair 1987, Chs. 8–9). Historical archaeology should not be confused with the relationship between archaeology and history. Dymond (1974) differentiates the methodology used in both history and archaeology, presenting a strong case that calls for a common ground between the two. The approaches used in the study of historical archaeology are many and varied. One approach to the past is historical. In the use of both historical and archaeological data, gaps will always remain in the reconstruction of the past. Schuyler (in Fagan 1985, pp. 25–30), working on the British medieval cities of Winchester and York, has demonstrated that even on sites where historical records are exceptionally complete, archaeology can provide crucial information to amplify them: the historical past will be more complete with the addition of archaeological data.

3.3 Theoretical trends in historical archaeology

On the theoretical level, historical archaeology has acquired a complex dimension. From the beginning (cf. South 1977, 1978a. 1978b), the theoretical leanings of the discipline have broadened to include descriptive and chronological concerns, cultural historical studies, and problems of culture process and cognition (Deagan 1982, pp. 151–77).

Firstly historical archaeology has been used to supplement the historical record, a trend which today is closely associated with cultural resource management, physical reconstruction and restoration. The use of archaeology to study historical issues is aimed at obtaining an objective standard of measurement, as opposed to the frequently subjective standard of written history.

Secondly historical archaeology has sought to address the reconstruction of past societies and conditions of the past. In this way it is almost similar to social history and ethnography but with strong cultural anthropological leanings. Foci are time, place and society. The study of Black American archaeology is an example, for the Black Americans have not been fully and accurately represented in the national history of the United States (Singleton pers. comm.). Sub-disciplines in this direction include Comparative Colonial Archaeology in both Europe and the Americas, Archaeology of the Minorities, and Plantation Archaeology.

Thirdly historical archaeology adopted a processual dimension. The processual orientation has a primary focus on general principles of culture process. Use is made of documents to delineate variables like ethnicity, religion, politics, occupation, economy etc. In this case the aim of historical archaeology is to solve general problems of archaeological interest, for example the problems concerning the spatial scale of socio-cultural processes in stratified societies (see Paynter's (1982) case study of the Connecticut River Valley, Western Massachusetts, U.S.A.) or to explain the generation or specificity of cultural material (Hodder 1987, pp. 1–8). The lack of a processual approach in historical archaeology in the 1970s is largely responsible for its crisis of identity. In the 1960s historical archaeology encountered problems of definition and had ill defined objectives, failing in the process to provide adequate explanations in the archaeological record.

Cognitive studies (philosophy of archaeology or archaeological science) have also been used in historical archaeology. The use of archaeological science involves testing the principles of archaeological interpretation under controlled conditions. This was started by Deetz in the mid 1960s. Cognitive studies have contributed much to archaeological theory (cf. Salmon 1982) but not without problems. Adopting a philosophy of archaeology means getting entangled in the problems of generality and truth, confirmation, laws in archaeology, analogy and functional ascription etc.

It is in America that Historical archaeology has acquired most of the theoretical dimensions outlined above. This is largely so because of the developments in both anthropological and archaeological theory in the 1960s and 1970s. In Europe, particularly Britain, the discipline has strong historical leanings which is a result of the wide body of documents or written sources relating to the medieval or post medieval period. In most cases documents are used as an aid to pre-exavication research or interpretation of archaeological sites.

During the 1960s and a greater part of the 1970s
archaeology was regarded as science and strongly challenged the use of historical explanations (cf. Binford 1968, 1972). The scientific position was questioned in the 1980s by scholars who were dissatisfied with the positivist perspective. The anthropological oriented school of thought developed by Hodder (1984, 1987) re-examines this approach seriously and takes a firm theoretical position arguing that archaeology should recapture its traditional links with history.

A historical approach in archaeology ... involves contributing to anthropological discussion and understanding of social change by concentrating on the particular context and meaningful action. (Hodder 1987, p. 2)

Thus irrespective of position, historical archaeology contributes immensely to a variety of problems and disciplines, and has the ability to compare human behaviour as revealed in the historical record with written evidence. It can also be used to test the veracity of written sources. The historical period in Zimbabwe provides a framework for other disciplines such as anthropology, historical linguistics and cultural geography to produce a balanced picture about the past.

3.4 The practice of historical archaeology in southern Africa

The following sections examine the state of the discipline of historical archaeology in the region, and propose potential topics and areas requiring investigation.

In South Africa historical archaeology projects have been carried out in the Cape coast and interior, in the Transvaal, Natal and also in Zululand.

The early colonial history of South Africa covering the arrival and the gradual expansion into the interior by the Dutch, the British occupation and the eventual colonisation of the Cape has always formed an important area of study (see for example, Elphic & Gillomree 1979). The argument strongly accepted in Afrikaner nationalist circles that the Cape area was empty when the Dutch arrived in 1652 is groundless as there is much evidence to the contrary that this area was inhabited by the Khoisan-Khoikhoi pastoralists and San gatherer-hunters (see for example, Hall 1987, p. 35).

The archaeology of early colonial settlement in the Cape region is important in understanding how the frontiers of trade and agrarian settlement came to be established in the 17th and 18th centuries, the breakdown of Khoisan society at the same time, and the gradual European domination of the Cape. Khoisan settlements have been located with the aid of historical sources in the south-west and north-east coast of the Cape Province.

Portuguese documents refer to the whole length of the South African coast, and data on the indigenous life may be extracted from them (cf. Theal 1898–1903 (vol. 8), pp. 1–361). In addition, a number of nautical excavations have been made, revealing data on Dutch and other ships that sailed past or anchored on the Cape coast. Much of the historical archaeology of the Cape Province has been done in Cape Town to document the evolution of the settlement since 1652. Excavations have also been carried out at Stellenbosch in the interior between 1975 and 1980 to document the life of the Dutch and the British between 1680 and 1850 (Posnansky & Decorse 1986, p. 7). The scope of historical archaeology is being widened to understand the complex inter-group relations since the first millennium (see for example, Parkington & Hall 1987). Ethnographic and historical records are used to predict past interaction.

The study of later farming communities of the southern highveld of South Africa carried out by Maggs and Mason fits into the context of historical archaeology. They located stone structures using aerial photographs and classified them according to their architectural style (Mason 1968, pp. 401–16, 1972, pp. 871–86; Maggs 1975, 1976, pp. 313–32). Maggs and Mason have used documentary evidence from 18th century European explorers as well as oral traditions to argue for a Sotho-Tswana identity to the stone structures found in the Orange Free State and the Transvaal. The south-eastern grasslands area of Natal have also been researched in the context of historical archaeology. Hall & Maggs (1979, pp. 29 ff; Hall 1987) have located 800 stone structures in the area using air photographs. With the help of oral traditions, they have identified these sites as late 18th century KwaKhumalo and KwaButhlezei chiefdoms.

Two historical polities, Zulu and Xhosa, dominated the eastern Cape between the Great Fish and the Great Kei Rivers, and Natal between the Thukela and Pongola rivers (Omer-Cooper 1969, 1978). In this region archaeological information can be supplemented by documents and oral tradition to assess how states were formed. State formation in this area was probably a result of both internal economic changes, incorporation of a large number of communities, and manipulation of foreign trade to possess an exclusive form of wealth.

Archaeological evidence is now questioning some of the hypotheses proposed to explain the rise of the Zulu kingdom, and the Xhosa paramountcy. The environmental theory proposed by Marks (1967) has been questioned by Hall (1981, 1987) who argues that in coastal Zululand there was adequate agricultural land until recently and that it was highly unlikely that a decline in agricultural production lay behind the formation of the Zulu kingdom. Thus the environmental correlate of soil erosion cannot explain state formation in Zululand or in the Xhosa
domain. There is no archaeological evidence to demonstrate that grazing land was inadequate during the period leading to state formation in Zululand, neither is there any evidence to show that the population of cattle increased phenomenally. On the other hand the role of trade in the formative years of these polities seems important. Trade with Delagoa Bay has been important since 1844 or earlier (Hull 1987, p. 127).

Mhungundhlovu, the Zulu capital built in 1829 by Dingane, Shaka’s successor and destroyed by the Boers in 1838, has been described by earlier travellers and traders, who have also left behind details of its plan and structure. Excavation of the Zulu capital by Parkinson & Cronin (1979, pp. 133–45) has added a tremendous wealth of knowledge to what is already known. It has been possible through archaeology to locate various houses for arsenal, the military barracks, the head of the town and to give an estimate of settlement density and population. It has been suggested that the town was supplied by distant villages and did not have its own immediate economic hinterland.

Recent research in Namibia has assisted in the understanding of the archaeology and history of the indigenous pastoral societies that have been forgotten as a result of colonialism. In 1984 Jill and John Kinahan (Kinahan 1991) surveyed the !Khuiseb Delta and adjacent areas. They recorded more than 200 archaeological sites, which represent a 2000 year sequence of human settlement in the Delta, from the rise of the indigenous pastoralism, contact with European visitors to the Namib coast, to the eventual collapse of the pastoral economies. This work uses primary 18th and 19th century documents relating to the exploration of the coast of Namibia. A number of Royal Navy vessels have investigated the coast of Africa and remark books and logbooks used by ship captains are housed in several archives in Britain. The archaeological understanding of the !Khuiseb Delta has been made possible by the availability of 18th century narratives, for example, Captain Thomas Bolden’s report which describes and gives an illustration of a pastoral village at Walvis Bay. The accounts have proved a valuable source of interpreting archaeological data. The 2000 year long pastoral history in Namibia collapsed in the 19th century with the coming of European merchant capital. John Kinahan has aptly demonstrated that pastoralism was a phenomenon with a considerable time depth.

Jill Kinahan (1992) gives first hand accounts of the captains of the Royal Navy who carried out a series of surveys on the coast of south-western Africa. Besides giving an insight into the advent of colonialism in what is now Namibia, the work offers a wide analytical base for studies in historical archaeology. For example, the historical notes, toponyms of the Namib coast, chart, and information on ships. The chronological chart given relate some coastal events to important internal developments, for example, contact with local pastoralists, trade and warfare. In about 1800 AD for example, Orland pastoralists from the Cape settled in southern Namibia. They made contacts with the local Nama pastoralists through trade and warfare. This work has contributed immensely towards the understanding of the Namibia coast through a collection of maps and manuscripts now housed in the Archaeology Department, State Museum of Namibia.

The period in eastern Botswana from AD 700 to AD 1500 is characterised by a marked rise and subsequent development of what Denbow (1979, 1984) defines as the Toutswe state. Prior to this, eastern Botswana was partially settled by farmers who reared sheep since 400 BC (Phillipson 1977). The relationship of the Toutswe Tradition sites with the proto Soho-Tswana communities in the region is still a subject of debate and is currently being investigated (Segobye, forthcoming).

In the Kalahari sandveld in western Botswana there has been a history of interaction between the hunter gatherers and the pastoralists dating from at least the 7th century to the 19th century. Questions are now being raised as to whether the San were ever in the more arid parts of the Kalahari before the arrival of the pastoralists, or agriculturalists (Parkinson & Hall 1987, pp. 2–3).

Historical records and oral traditions referring to pre- mfecane communities in Botswana can bridge the gap between the well documented early periods of well organised settlement in the east and the historical events of the late 18th and 19th centuries. Historical archaeology can provide independent and structural evidence for the reorganisation of dynamics of settlement as dictated by the mfecane and some environmental constraints in the region (Kiyaga-Mulindwa 1989). Historical archaeology can also be used in Botswana to verify oral traditions before they are accepted as a source of historical information.

While studies of this nature are still in their infancy eastern Botswana later historical communities can be investigated in this way. The history of this area was influenced by a number of events including the mfecane, the activities connected with the Ndebele state in south-western Zimbabwe, and the expansion of both the British and the Dutch frontier into the interior.

Historical archaeology can also be used to explain the small clusters of Kalanga existing all over Botswana in relation to their main area of settlement in north eastern Botswana. While it is possible that the mfecane contributed significantly towards their dispersal, oral traditions and written sources can be used to produce an accurate past of the Kalanga by supplementing them with historical archaeology (Kiyaga-Mulindwa 1989).

Although the reports of travellers, traders and missionaries have generally given a 19th century picture of Botswana now accepted today, a careful examination of some
of their reports reveal how subjective they are, for example those made about Shoshong, the capital of the Ngwato between 1770s and 1889, Palapye (1889–1902) and Serowe (1902–present). All these Ngwato capitals had at some stage in their history a population estimated at about 50,000. Their sizes have been estimated and the abandonment of the former two is due to lack of water. Well documented as they appear to be, much of the artificial remains of the abandoned urban centres including the commoner houses and the king’s residence have deteriorated considerably. Archaeology should locate the mud walls especially commoner sites which have been neglected at the expense of elite ones (Kiyaga-Mulindwa 1989, pp. 1–9).

In Mozambique, early records provide adequate sources of study of the Portuguese mercantile expansion in the region, as well as revealing valuable insights into the nature of the extant institutions among the contemporary farming communities (Morais 1988, p. 35). Adequate data is available concerning Portuguese activities at Sofala, Mozambique Island, the Lower Zambezi Valley and their relations with the Swahili, especially those trading with the interior communities and those from the sultanate of Angoche and the settlements of Sena and Tete on the Zambezi. Also available is detailed documentation on some of the local communities the Portuguese interacted with both along the coast and the hinterland of Sofala, and on the prazo system (Bhila 1982; Axelsson 1964; Isaacman 1972a, 1972b; Newitt 1973; Smith 1983).

Portuguese written sources refer mostly to these areas and they are often first hand accounts. Some Lower Zambezi Valley areas were part of the Mutapa state and data is available on the spatial structure and lines of political control of the Mutapa state in the area (see for example, da Costa 1980). From Isaacman (1972a) we have a list of the major prazos in the Zambezi Valley dating 1750–1900, for example Makanga, Massangano and Gouveia. Such historical data is important in that it provides the basic information from which to start detailed archaeological fieldwork. Garlake and Newitt produced a plan of the prazo of Massangano and some of the archaeological evidence relating to the prazo system was revealed (Newitt 1973).

The contrasting theoretical and methodological orientations the Mozambican scholars are taking can be seen in the cultural perspectives of Rita-Ferreira (1975, 1982) and the strong empiricist traditions of history adopted by Liesegang (1972) but these contrast markedly with historical materialist structuralism of da Costa (1980).

The Portuguese settlement process at Sofala and their incursions into the hinterland area of the Mozambique coastal plain is well documented. Published data such as that of Dickinson (1968, pp. 33–47) is a valuable starting point in investigating the archaeology of the Portuguese at the fort of Sofala and the Swahili community living on the mainland coast. Mention is also made of some capital areas of the interior polities such as Madanda, Barwe and Sachitiwe (Bhila 1982). During the 19th century, some infecane groups passed through the area. Between 1825 and 1896 eight locations of Gaza capitals are known and these can be followed up archaeologically (cf. Liesegang 1975; Smith 1983).

Cultural continuity in eastern Zambia from the 11th century onwards is demonstrated by the presence of Luangwa Tradition pottery (Phillipson 1974, 1–25). This however has never been viewed in the context of historical archaeology despite the wide body of oral traditions collected from the Nsenga, Ngoni, Chewa, Beniha, Soli, Lala, Lamba, Tumbuka, Bisa, Lunda and other communities in the area (Phillipson 1977, p. 172, 177; 1985, pp. 200–1). This pottery was established long before the arrival of chiefly dynasties claiming a Luba-Lunda origin in the late 15th and 16th centuries (Phillipson 1974). When the Ngoni came to the area in the 19th century they did not alter the pottery making tradition, but adopted the local ceramic craft (Collett 1987).

Archaeological evidence in southern Zambia has supported sketchy Portuguese documentation referring to the economic activities with communities south of the Zambezi (Garlake 1970b). The trading emporium of Ingombe Illele, may have had some links with the Mbara of the Hurungwe plateau, mentioned briefly in some Portuguese references. The site of Ingombe Illele, located immediately upstream the Kafue confluence with the Zambezi was occupied initially in the 7th or 8th century, and again later in the 15th century (Fagan, Phillipson & Daniels 1969).

In western Zambia historical archaeology has not been fully utilised as Phillipson (1977, p. 178) contends that

The interrelationship between the traditional history of western Zambia and the imperfectly known archaeology of that region remains far from clear.

Although the Lunda claim almost the same origin as the Luba of eastern Zambia, Lungwebungu Tradition pottery, which characterises the basic population of the area in the second millennium AD, is different from the Luangwa Tradition. This probably means that state formation attributed to Luba-Lunda origins did not radically affect the ceramic traditions of the area, and may indirectly imply that minor rather than large scale migrations took place from Luba-Lunda original homeland. Changes may have been fundamentally political rather than material.

During the 19th century the Barotse Flood Plain of Zambia was occupied by the Kololo, a Sofho-Tswana group which migrated from south of the Limpopo during
the mfeane. Their influence in the area led to the introduction of a new pottery tradition, the Linyanti Tradition, made exclusively by women (Phillipson 1977, p. 179). This pottery has affinities with pottery made by modern Sotho and Tswana.

A wide range of issues are being addressed by a number of East African scholars under the theme of Urban Origins, adopting a wide range of approaches to the archaeology of the area some of which are historical (Sinclair 1991). Historical archaeology has been used to address settlement patterns and matters related to the Indian Ocean zone especially at Fort Jesus (Kirkman 1974) and in the towns along the East African coast (cf. Allen 1980, pp. 351–3). In the hinterland, the stone built settlements of Afar and Ogaden have been viewed in the context of the desert trade of eastern Ethiopia (Wilding 1980, pp. 379–80).

In the interior where written sources are lacking oral traditions have been used in some areas to investigate archaeological sites. Schmidt (1977) analysed and used historical oral tradition which was linked with archaeological sites. He made a structural study of Buhaya oral traditions in order to explain the chronological structuring of dynamic histories as well as the history of occupation of some sites. Types of oral traditions were combined with archaeological data. Schmidt called for a multidisciplinary approach in the study of African archaeology, with heavy leanings on ethnohistory and anthropology. He has redefined the term historical archaeology by treating oral evidence as a document, given the absence of written sources. This has wider implications towards periodisation: Schmidt argues that historical archaeology in Buhaya covers all periods of the Iron Age, including the Early Iron Age, considered generally as prehistoric. As pointed above, Schmidt’s approach is too controversial, and will not be used in this work.

To complete the review of historical archaeology in the region, I now turn to the Zimbabwe plateau. The use of written sources to interpret archaeologically attested phenomena on the Zimbabwe plateau began with antiquarians such as Bent (1896). Bent attempted to relate some archaeological sites especially stone structures and earthworks with information from existing Portuguese literature. He identified a site in northern Zimbabwe which he linked to the 17th century Portuguese activities in the region and then mentioned the existence of similar sites in the area. Bent had access to Portuguese documents. His knowledge of archaeological sites in the area was restricted to stone buildings probably of a later period, and 2 sites of the Great Zimbabwe Tradition, identified as Yellow Jacket and Mutoko (Terc). Hall (1905, 1909) also consulted Portuguese documents but like Bent, he was concentrating on the origin of sites of the Great Zimbabwe Tradition.

Systematic use of Portuguese written sources in archaeology was started by Randall-MacIver (1906, pp. 90–104). He also cited other works and used oral traditions. Thev’s Records of South Eastern Africa (in 9 volumes) (1898–1903) had just been published and MacIver had access to them. He deduced data on loopholed stone structures, Afro-Portuguese trading centres, burial customs, Mt Fura structures and stone building in the Mutapa state.

Tracey (1940) used Diogo de Alcâçoova’s account of Antonio Fernandes’ journeys into the Mutapa state at the beginning of the 16th century to gather information pertaining to trade and politics. He used Fernandes’ routes to locate regional names, capital sites, river systems, rulers, gold producing areas etc. He also used 16th century cartographic data to locate some places on some of the maps known to geographers. He has also demonstrated in a later work (Tracey 1968) that some of the place names mentioned by Diogo de Alcâçoova are still identified by the same names today. No follow up has yet been made but Reverend Rea (1968, pp. 27–32) critically examined Portuguese sources to trace convincingly the route followed by Gonçalo da Silveira to the Mutapa capital in 1560.

In the late 1950s and the 1960s some archaeological sites in northern Zimbabwe were located physically with the aid of both oral traditions and written sources. Abraham (1961) identified the trading market of Rimuka near the Mupfure River, a site which Garlake (1967a) later excavated. Abraham employed the ‘complementary source method’ based on the assumption that oral traditions confirmed what was in written sources. This has since been shown not to be the case (Beach 1991).

Garlake did not consult much documentation but worked on the information of his predecessors. He relied on Bent’s identification of a trading settlement located in the upper Mazowe valley to excavate the trading site of Dambarare (Garlake 1967a, 1968, 1969a). He also located and excavated the Afro-Portuguese market of Luanje in the same way (Garlake 1967a). In his book on Great Zimbabwe (1973a) Garlake devoted a chapter to extracts of Portuguese sources on some archaeological sites in northern Zimbabwe. Rodger Summers (1971) also used Portuguese documentation and other written sources in his study of stone structures and Portuguese trading centres. He cited documents which helped him with the identification of the builders of stone monuments.

Archaeologists in Zimbabwe have never practiced historical archaeology, but only used documents in as far as they related to the later farming communities they were focusing on. There is a general lack of broader research issues as archaeologists considered the period after 1500 the domain of historians. Beach (1987) has also shown the relationship between oral tradition and archaeology.
and the extent to which Portuguese written sources can be used by archaeologists working in the historical period. The use of historically attested models for example on levels of Shona socio-politico-economic organisation and settlement patterning from homestead to chieftainship level can profitably help the historical archaeologist in evaluating archaeological data for the period in question (see Mudenge 1988).

3.5 Overview: addressing the problem of Afro-Portuguese interaction

Posnansky and Decorse (1986, pp. 1–14) have given a summary of the major historical archaeology research projects in sub-Saharan Africa, but indicate that the discipline is still in the pioneer descriptive stage (p. 12). They call for an integrated approach to the study of the past which examines both foreign and local components. In southern Africa, the majority of the work has been carried out in South Africa where historical archaeology has been used successfully to bridge the gap between the prehistoric period, the proto-historic period and/or the historic period. Written sources have been an added advantage in so far as they refer to non-literate coastal and hinterland societies, but oral traditions on origin and past places of settlement are equally useful where the former are unavailable. This is largely the picture obtained from different areas of Mozambique, the northern part of the Zimbabwe plateau and some areas north of the Zambezi.

The theoretical positions taken mostly by American scholars have only been utilised to a limited extent in southern Africa where archaeology is still traditional. Mason (1972, pp. 871–86) used locational models to account for settlement patterning in the highveld of South Africa. The research in the Cape region of South Africa has also attempted to address a range of issues such as the Dutch extension of the agrarian and settlement frontiers into the interior in relation to the disintegration of the Khoisan society (see above), while in Zululand, a hypothesis oriented approach has resulted in the questioning of the explanations given by historians for the rise of the Zulu kingdom (Hall 1987, pp. 136–7).

A position is taken here calling for the use of historical archaeology to investigate broader issues such as state formation processes. Historical states have a complex network of political, social and economic relations and historical archaeology should be used to understand them. The only historical state to have received such a treatment is the Zulu state (Hall 1987). The political and economic relations of this polity have been explained in terms of demographic or population stress, decline in land productivity caused by soil erosion, drought, disease and increased livestock herds (Guy 1980, 1982). Hall (1987) examined the archaeological evidence from an ecological perspective.

With regard to the Mutapa state it is tempting to adopt a model which relates regional factors such as trade to internal ones by focussing on the historical conditions underlying these factors. The formation of the state must be understood in the context of the role of the elite in the control of the branches of production and settlement policy of the Zimbabwe plateau. The environmental data in Chapter 2 would indicate the importance of agriculture and other domestic sectors of the economy playing a major role in placing the Mutapa state within the realms of the Indian Ocean commercial network.

One of the problems outlined in Chapter 1 concerns the characterisation of northern Zimbabwe after 1500 AD. Historical literature exists which indicates that the Mutapa state was fully developed by this time. This, however has not been verified archaeologically, and some scholars (Huffman 1971a) have suggested that it developed into the so called ‘Refuge’ period. One of the major research aims was to see whether the archaeological correlates of the Mutapa state transformed into ‘Refuge’.

This work also attempts to understand the Mutapa state through the examination of evidence pointing to Afro-Portuguese interaction. Contact and interaction are important topics in archaeology, and studies are now being focussed in this direction (see Parkinton & Hall 1987, pp. 1–25). The last two millennia in southern Africa have shown an increasingly complex record of population movement and interaction. Parkinton & Hall (1987) propose an approach which takes into account the different physiographic units in order to understand the circumstances where mutually interdependent economies were juxtaposed. They question The Age System in archaeology as it fails to understand this complex relationship between the different economies as revealed by pastoralism, agriculture, ceramics and iron technology. This perspective should be employed by historical archaeologists because ethnographic and historical records also help to predict the kinds of interaction to be expected (Parkinton & Hall 1987, p. 15). Historical documentation alone relating to northern Zimbabwe shows a fairly complex picture.

By the late 15th and the beginning of the 16th century, merchant capital was introduced in southern Africa, bringing in new set of inter-group relations. It subsequently resulted in violence and conflict in northern Zimbabwe, and (without denying the weakness in the internal political system) was largely responsible for the demise of the historical Mutapa state on the plateau area. The period from the late 16th to the 19th century has been termed by Hall (1987, p. 129) ‘the three centuries of turmoil’. By the end of the 16th century, the Mutapa and the Maravi states had both expanded their frontiers to the
Zambezi valley where they came into contact with each other, and with the Portuguese. The rise of the Portuguese war lords sometime in the 16th and 17th centuries unleashed a wave of violence in the Zambezi valley which had ripple effects in adjacent areas, and we can only understand a certain category of archaeological sites (loopholed stone structures) in the research area within this context.
4. EXTRACTING THE DATA: THE ARCHAEOLOGICAL SURVEY

4.1 Introduction

The Mount Darwin research project has been designed to investigate the archaeological composition of the area mainly between the Mazowe and Ruya rivers, historically known as Mukaranga, and to find out whether sites within these natural boundaries may be attributed to the historical Mutapa state.

The area was originally chosen with the idea that the stone structures on Mt Fura and nearby mountainous areas were Mutapa sites and that sites with imported material represented Afro-Portuguese interaction as reported in the Portuguese documents, and by extension Portuguese trading centres or recipients of imports. The local ceramics associated with the imports would constitute part of the material culture of the Mutapa state.

The area selected for detailed field work measures 20 by 50 km, and is broadly defined by the Ruya River to the north, the Gwetera River to the south, and Mupfuriru River to the west. The Mufurudzi safari area defined by the Mazowe River to the south and south-east was not surveyed in detail owing to delays in granting of research permits and also for logistical reasons. However some of the sites recorded in the museum were revisited, and the status of sites found on Chizinga and other mountains in the area was established.

4.2 Previous work in the research area

The area east and south of Mt Darwin has a history of archaeological research dating back to the late 19th century. Despite the long history, research has been sporadic, with little archaeological content. In late 1889 Frederick Courtney Selous passed through the Mt Darwin area and recorded alluvial gold workings in the Mukaradzi River and near Rusambo Mission. It was Selous who renamed Mt Fura Mt Darwin in honour of the 19th century British scientist, Charles Darwin. Selous' interests were not archaeological but an extension of British influence and territory in an area that was traditionally thought to be a Portuguese stronghold.

Colonial settlement began in the Mt Darwin area about 1890, a major attraction being the ancient workings. At that time the area was regarded in colonial circles as hot, malarial and inaccessible. A number of gold mines were opened at the beginning of the 20th century and were intensively worked until the 1930s when they were closed for economic reasons. This economic exploitation was responsible for the destruction of a number of archaeological sites associated with pre-colonial and prehistoric gold mining in the area.

In the 1920s Wagner and Lightfoot made reconnaissance geological surveys in the area and in 1923 Lightfoot described the ancient workings of the Mukaradzi valley. In the late 1920s Tyndale Briscoe carried out more geological surveys. In 1930 Major Tulloch described gold washing in the Mazowe River. In 1933 Lightfoot reported a reef at the former Mickey Mine near Mt Darwin which he identified as an ancient working. While the work of these early geological pioneers might not be of immediate archaeological importance it was Summers (1969) who compiled data from the Mines Department records and the Geological Survey of Southern Rhodesia to produce a history of precolonial mining in Zimbabwe, which also covered the Mt Darwin area.

In the late 1920s the colonial authorities started to collect ethnographic data in the area. This however was of little archaeological importance (Posselt 1929). In 1932 Hobson reported the existence of some blue and white porcelain, glazed earthenware, glass bottles and old alluvial workings near the Duke of Cornwall Mine on the north bank of the Mukaradzi River about 8 km north-east of Mt Fura. The archaeological context of the material is not clear but records in the Museum of Human Sciences in Harare indicate that the imports probably came from a re-excavated old mine shaft. The site was thought to be the Portuguese trading market of Massapa. The report is important in that it marks one of the earliest known references to exotic artifacts in the area linked to Afro-Portuguese commerce.

With the abandonment of the mines in the 1930s archaeological research was postponed until the 1950s. The reports in the Museum of Human Sciences on events in the region during the period from the 1930s to the early 1950s are fragmentary and cannot be pieced together to form a coherent account. However, in August 1947 a certain Mr Huntley reported to Elizabeth Goodall a 'fort' on Chizinga mountain. The circumstances leading to this 'discovery' are not clear but a brief survey of the moun-
tain in 1990 has given us some useful clues as to the builders of some loopholed stone structures in the area were (Plate 3).

In the 1950s some historical and archaeological research was carried out in the Mt Darwin area by teams from the formerly University of Rhodesia and Nyasaland and the University of Witwatersrand. The research focussed on the archaeological identity of the Mutapa state and the Portuguese trading markets or feiras. The works of Eric Axelson (1956, 1964) and Donald Abraham (1959, 1962) should be understood in this context.

From 1950 to 1952 Axelson surveyed the area to the east of Mt Fura and reported the existence of at least five loopholed stone structures. In 1958 Axelson and Abraham surveyed an area further east of Mt Fura in the lower Mazowe basin in search for the Portuguese trading feiras of Bokuto and Luanze. Both had detailed knowledge of Portuguese written sources and used locational data derived from those documents to try to locate the sites. Abraham used oral ethno-historical data as an added tool to his research efforts; he interviewed local peoples to obtain information on some archaeological sites in the area.

Axelson following up information obtained by Abraham from an informant, surveyed Ruhanje hill near Mt Chitambo in the Mukota Communal Lands in an effort to locate the site of Luanze. This site was later relocated by Garlake (1967a). While they were searching for Luanze, they also reported ‘a loopholed stone wall fortifying a low rocky bluff overlooking the Mazowe immediately above its confluence with the Nyadiri.’ This site was thought to be the Portuguese trading market of Bokuto situated between Massapa and Luanze. They also reported other stone structures further up the Mazowe which they dated, on the basis of oral evidence, to the nineteenth century.

Around the same time the search for the site of Massapa began and once again Axelson and Abraham used evidence from written sources to try and locate it. Abraham reported more stone structures in the area in 1958 and identified one site (Chenguruve Hill) as Massapa on the basis of some Chinese blue and white sherds picked from the outside middens. Axelson, however, was more cautious. He indicated (Axelson 1964, p. 8) in a footnote that despite the location of a number of loopholed stone structures in the Mt Darwin area, and despite “the persistent rumours of a ruined church near Mt Darwin” there was no positive identification of the site.

More detailed archaeological and geological surveys were carried out in the area by Major Mather of the then Umtali Museum. In 1960–61 Mather conducted fifteen
months of private survey work in the Mt Darwin area covering an area of 300 square miles and recording sites of archaeological importance. The area covered is the mountainous region bounded by the Gwetera River to the north, the Bindura-Mt Darwin road to the west and the Mazowe river to the east and south. He observed that the area in the vicinity of Fura was actually the most interesting although it had been ignored in the past. He also recognized that despite the presence of many recent mines not many sites had been reported. The geology of the area formed the basis of his interpretations. He attributed the archaeological importance of the region to the gold belt.

He recovered some stone artifacts (hand axes, arrowheads, and microliths) which he dated to the Middle and later Stone Age, and a ‘barrel shaped bronze head’. He did not report any rock paintings. The local pottery he collected was grouped with the help of a local mine labourer, into three broad classes on the basis of modern pottery making traditions: These included Korekore, ‘The Old People’ (modern) and Rozvi. Korekore pottery was identified as polished, scraped and shaped by freshwater mussel shell (collected from the Mazowe river during the dry season). He characterised the pottery as ‘uninspired gritty ware with a grey-buff slip, with very little to no decoration’. The ‘Old people’ ware is said to be similar to the present day Makorekore pottery but there are subtle differences in shape, slip and thickness. These differences are not given but are regarded as the main separating criteria. The Rozvi pottery is regarded as a ‘better class ware’. It was identified as red, with little grit, red slipped, and decorated with bold incised patterns. Unfortunately his collections are not found in the museum, but the descriptions closely match those given in Chapter 7. The pottery classified as ‘Rozvi’ is probably of the Great Zimbabwe tradition, while the ‘Old people’ ware is comparable with that found in loopholed stone structures and unwalled sites with a hilltop location. Traditions collected in the earlier part of the century had elevated the Rozvi myth, and some scholars had associated them with the building of Great Zimbabwe.

Mather gives an historical account of the area based on the Portuguese documents he consulted. He noted the importance of the Mt Darwin area in relation to the Mutapa state and the early Portuguese penetrations. He also gave Duarte Barbosa’s account of trade with the Swahili from the coast and identified the probable trade route, references to the Mt Darwin area, the establishment of Massapa in the 1530s and the establishment of the Captain of the Gates at the site, and the destruction of the site by Changamire in 1693. Mather thought this led to the emergence of the Makorekore and the Mutapa losing the plateau country.

Mather used the Portuguese references to the site of Massapa to try to locate it. He concluded that given the limitations of the accuracy of the geographical description of the day, Massapa was located close to Mt Fura. The physical search involved questioning European and African residents, examination of farm records and diaries, air photographs and walking over farms and bush in land that is marked ‘State land’ on modern topographic maps. The information obtained was largely negative. His team concentrated their survey on the south side of the Mt Fura until a miner told them that there was disturbed ground and rubble to the east of the mountain. Mather claimed he found the site which he described as a series of mounds, ditches and earthworks ‘the plan of which it is not easy to make out except that it seems to follow a main street axis’ (Mather n.d.).

Mather also described some of the 13 stone structures he observed in the area. He described the architecture as ‘unmortared random rubble, apparently of divergent periods on the basis of the moss and lichen cover.’ Of the total thirteen enclosures, 8 are said to have been in a good condition, three were broken down while 2 were incomplete. The quality of the workmanship varied considerably but it was not clear as to whether it represented different ages. Others are said to have been constructed in foliated stone which gave a tidy appearance, whilst one shows evidence of a skilled hand in that the granite slabs were of even size and thickness and the masonry bonded with almost the accuracy of modern brickwork. For a full architectural description given by Mather, the reader is referred to the original report in the Museum in Harare (File 1631DC). It is clear from the report that he was referring to the loopholed stone structures in the area. One site he describes was probably of the Great Zimbabwe tradition:

It is incomplete but obviously the commencement of a circular wall which would have enclosed a radius of 10 ft and would have been some eight feet high. The completed portion of the wall backs up against a kopje, a part of which forms a path to the top of the wall. The granite blocks of which it is built are even in thickness and well matched in length whilst the bonding is of excellent workmanship. The quality of the style bears no relationship to other structures in the area.

He compared the stone structures to those found in Nyanga and concluded that no stone lined pits or terracing have been seen, neither did air photos show any signs of settlement with such works. He suggested that the stone structures were ‘... part of an organisation based on the mining and export of gold...'”

In 1964 Mather gave a report to Summers (1969, p. 39) on the nature of the pre-colonial mines found in the Mudasiri Valley, and the existence of similar mines in the area 30 km east of Mt Fura. He also reported 4 non-walled sites with a hilltop location:
Isolated sites on rising ground (or knolls) show signs of settlement such as grinding places on granite exposures, querns, but foundations and corner stones for grain bins.

Mather reported no burials. He identified a small smelter in the open, close to a water source. A sketch map is supposed to accompany his report deposited in the Museum, but it is now misplaced. There is however a reworked map in the Iron Age Archaeological Survey (File 1631D3) attributed to an anonymous person, but with letterings corresponding to those in Mather's account. The map has sites lettered from a to n, excluding i, making a total of 13 corresponding to the number of stone structures reported by Mather.

In the mid 1960s, with the help of Portuguese written sources and working on the reports of Axelson and Abraham, Peter Garlake identified the site of Luanze which he subsequently excavated (Garlake 1967a). The material found from the excavations gave proof of the site's connections with the Portuguese.

In 1969, Summers published a memoir on ancient mining in Zimbabwe based on oral information, Mines Department records, and reports of the Geological Survey of Southern Rhodesia. He listed 19 ancient workings reported from the Mt Darwin area, 5 specifically from the Mukudzi River Valley. The precolonial mines were listed as archaeological sites and also quantified according to the technical detail, mineral output and cultural detail (Summers 1969, pp. 38–9). Although some of the data needs revision, Summers' work is important in that he was the only researcher in Zimbabwe to categorise old mine workings as archaeological sites.

At the beginning of the 1970s the Native Affairs Department resumed research in northern Zimbabwe. Latham (1970, 1972, 1975) collected oral traditions and ethnographic data from the districts of Centenary, Mt Darwin and Rushinga. Latham discussed the fate of the Mutapa state after the disruptive civil wars and the Portuguese conquests. It is now known that there was a general process of resettlement of the people by some of the Mutapas in the central parts of the state following a major depopulation during the periods of disturbance. The area this work focuses on is traditionally known to have belonged to the Bvuma dynasty. After the early 17th century wars the areas to the west of Massapa and Mt Fura were given to the Madziwa dynasty as part of the land grants by [Mutapa] Mukombwe (Beach 1980, p. 136).

In 1971 Huffman, who was Keeper of Antiquities at the then Queen Victoria Museum reported a stone structure close to the banks of the lower Gwetera river, which had some imported material inside it. During the same year, a certain Mr Rose who was opening up a mine close to this site panned some gold and glass beads from a stream flowing into the Mukudzi.

In January 1972 Woolley reported a number of sites to the National Museum including some loopholed stone structures close to the confluence of the Mazowe and Ruanga rivers, another stone structure in Mahonje mountain, 3 loopholed stone structures close to the confluence of Mazowe and Mohamba rivers, 5 stone structures in Nyamanga and Domatsoko hills in the Shamva district, as well as some rock paintings near Kanyemba village, also in the Shamva district.

Some of the archaeological reports in the Museum files do not give dates as to when they were compiled but most archaeological sites were reported before the liberation war seriously undermined colonial adventurers and treasure seekers in the area in 1973.

More information on archaeological sites emerged from the Mufurudzi safari area with the reports of Mahlin and Dr Judy Maguire. Mahlin reported the existence of stone structures on Svisvamoyo mountain and the headwaters of Mohamba river. Dr Maguire reported a sherd of blue and white porcelain picked up close to the banks of the lower Gwetera river, and a loopholed stone structure located on a low hill to the north of the foot of Gwiranezara mountain. She identified this site as Massapa on the basis of what she thought were earthworks.

Further to the south, in the upper Ruanga catchment area, Woolley reported a stone structure in 1969 and Brown reported another in 1971. The site reported by Woolley is probably the Great Zimbabwe Tradition site of Ruanga which Garlake excavated in 1969 (Garlake 1973b).

In 1974 Malcom Light reported the existence of some stone structures at Bungwe (Site number 1632CA4, Grid Reference US99677) and Nahwa Hill (1632CA3, VS114677) in the vicinity of Rusambo Mission, northeast of Mt Darwin. The cultural affinity of the site at Bungwe Hill has not yet been established as no follow up work has been done, but the details given on the Nahwa Hill site are consistent with the general description of loopholed stone structures.

In the early 1980s the Tsetse Control Programme started work in the lowveld and adjacent areas of the escarpment prone to infestation by the fly. Areas covered include the Mufurudzi safari area and the Zambezi valley, adjacent communal areas where cattle husbandry had been hampered by the fly such as Maramba, Phungwe, Chesa, Kandeya, Nwedza and others. Some members of the unit reported archaeological sites from the areas they worked. In July 1982 Mr G. Davison of the Tsetse Control presented the Keeper of Antiquities, Mr Walker, with details of a loopholed stone structure he saw in the Mufurudzi safari area (Site 1632CC1 Grid Reference US941323).

In 1984 Huffman from the University of Witwatersrand carried out some surveys on Mt Fura, recording a num-
ber of stone structures on the mountain. The Prehistory Society of Zimbabwe made a survey of the area close to Mt Fura in 1985 to locate Massapa. Some of Huffman’s statements and conclusions have however been questioned following a visit to the mountain by Soper and Pvit in 1988 (Soper 1988).

In 1988 Henrik Ellert claimed to have located the site of Massapa near the Mukaradzi river on Chesa Farm 2 north east of Mt. Darwin, on the basis of the information that he obtained from a family that had settled in the area in the 1950s, the density of imported ceramics (the fine glazed blue and white porcelains of the Wan-Li period of the Ming dynasty and late K’ang Hsi period of the Ching dynasty and stoneware) and the presence of alluvial gold. However the quantity of the material and the extent of its physical distribution would be inconsistent with a major settlement such as Massapa and there are no surviving earthworks. The site has been numbered 1631DC27 and is on Grid Reference U570404.

The history of archaeological research in the research area is a combination of more chance, economic adventure, and serious fieldwork. The overall archaeological picture is confusing and it is difficult for archaeologists to relate sites recorded so far into defined cultural traditions (see for example Huffman 1971a, 1974, 1975). Most of the researchers who visited the area had consulted Portuguese written sources and thus went into the field with the notion that whatever site was mentioned in Portuguese documents could be located archaeologically.

The search for the Portuguese trading station of Massapa dominated archaeological research since the 1930s and a number of researchers have claimed to have located the site. None of these claims have been convincingly substantiated though Mather’s site has never been relocated for examination. On the other hand, all sites found with some exotic ceramics such as Chinese blue and white porcelain must have been associated directly or indirectly with the Portuguese.

The interpretation given by Axelsson (1956, pp. 8–12) on the loopholed stone structures has been accepted to this day. The sites have been regarded as Portuguese, sometimes on the basis of a few imported ceramics found in them. They have also been confused with stone structures of the Great Zimbabwe tradition, and regarded without question as centres of the Mutapa state (Huffman 1986). This confusion is a result of a failure by the researchers concerned to appreciate the complexity of the overall process of prehistoric and historic settlement in the area. The detailed field survey carried out by Mather in the early 1960s is appreciated in that it revealed a more comprehensive picture than the ethno historical oriented approaches of Abraham (1959) or the purely historical approaches of Axelsson (1964).

4.3 The survey methods

The information in The Museum of Human Sciences, Harare was used to establish the range of archaeological sites found in the research area as recorded in the Iron Age Survey File. Some of the pottery collections in the museum, both local and imported, were examined. As detailed above, a number of stone structures had been reported in the 1970s particularly in the Mufurudzi safari area, while in the Chesa area of Mt Darwin several locations where imports had been located were also known.

The Archaeological Survey files, like any other archival material, are incomplete. A considerable number of sites has been reported by non archaeologists. Building up an archaeological site data base on the basis of information provided by such persons is difficult. It is the policy of National Museums and Monuments that such sites should be independently verified by trained professionals but in many cases this has not been possible. A heavy bias in the information relating to the research area is that sites reported to have imported ceramic material are exclusively associated with the Portuguese, and all the stone structures either with the Portuguese or the Mutapa state. The confusion that has resulted from this picture has already been discussed in Chapter 1.

In the field surveys of intuitively selected areas were carried out to establish from the people living in the research area where archaeological sites such as ceramic and daga scatters, iron working areas and stone structures were located. Information on the location and type of sites in the research area was obtained from farmers and other people in the small scale farming areas and adjacent communal lands. In the Mufurudzi safari area which is of limited and difficult access, advantage was taken of the experience of the game wardens and other National Parks staff to locate sites or revisit those previously reported. Their efforts were complemented by the Veterinary Department Tsetse Control Unit whose staff had been working in the area since 1982. They have opened up roads and cleared some areas to make the woodland more accessible. They also reported several stone building and non walled settlements.

A major problem with local competence is that in some areas the people are unwilling to report sites for reasons connected with either superstition, respect of the past, or the cultural importance attached to certain places. For example a number of folk tales were gathered concerning what was to be found within Mt Fura, but no one was prepared to show our survey team some of the things they talked about. In fact few of the present inhabitants have traversed the mountain due to difficult access. Some of the mountains in the Mufurudzi safari area have never been surveyed by the National Parks wardens working in the area because of the rugged terrain.
Another problem was that of establishing a boundary. Plog et al (Plog, Plog & Wait 1978a) mention three kinds of boundaries: arbitrary (defined on criteria not sensitive to patterns either natural or cultural), cultural (defined on the basis of the distribution of artifactual material) and natural (defined on the basis of topography). Written sources locate Mukaranga, the original capital area of the Mutapa state, roughly in between the Ruya and the Mazowe Rivers.

The range of archaeological sites in the research area, as expected, was not limited to stone structures. To recover as much detail as possible, search was also made for small sites represented by low artifact concentrations. In this situation it is important to define the limits within which one is operating. Site definitions range from the simple practical concepts adopted by Hole & Heizer (1966) to the more complicated theoretically defined models of Clark (1972). The Southwest Anthropological Research Group (SARG) (Plog et al 1978b) has defined a site as ‘any locus of cultural material, artifacts or facilities’ with an artifact density of at least 5 artifacts per square metre. There are problems with this density based definition for there are places with much less artifactual material per unit area which qualify to be defined as sites. This definition is too rigid and may result in the omission of considerable data needed for archaeological purposes. It is difficult to define a limit for an archaeological site. Plog et al (1978b, p. 389) defined a site as ‘a discrete and potentially interpretable locus of cultural materials’. This definition was adopted for the purpose of field survey.

To eliminate bias in the range and distribution pattern of sites, extensive surveys were carried out in areas selected for detailed study (see Map 8). The area included measured approximately 20 km north-south, and 50 km east-west. It was broadly divided on the basis of relief as follows: the plains to the north (870 square kilometres, or 87% of the total area), and the mountains to the south (130 square kilometres or 13% of the total area). The effective area surveyed was 65 square kilometres (7.5%) for the plains and 10 (7.7%) square kilometres within the mountains.

The basic survey unit was the square kilometre but this was sometimes adjusted to accommodate features such as slope, valley sides and dense vegetation. Included in the above figures is data from previous surveys, especially the surveys on Mt Fura, though extraction of detail was sometimes limited by the rough terrain (Soper 1988, Soper ad...
The survey was conducted by a team of 4-7 people moving in intuitively selected areas. The basic division of the research area into two broad environmental units was prompted by the fact that previous surveys were focussed in the Mukaradzi valley and adjacent mountains to the south and in the Mufulurudzi safari area (see for example section 4.2). This archaeology of the Mukaradzi gold belt and the adjacent mountainous terrain has contributed towards understanding only half of the total settlement structure in the landscape. It has certainly missed other category of sites, especially those found north of the Mukaradzi.

Following the discovery of extensive remains of imports associated with local ceramic material in Farms 1, 4, 5, 7 and 8, it became necessary to conduct a total coverage of the surrounding areas to define the extent of a probable settlement complex. The density of sites north of the Mukaradzi therefore shows what was recovered from the survey, and not the actual pattern of sites.

The parameters recorded are based on the standards established at the Urban Origins specialist workshop held in Mombasa in 1988 (Sinclair 1988). Stone structures were also recorded using a special check-list, modified from that produced for East African coastal town sites at the Mombasa workshop (see Pikiyri 1990).

4.4 The survey results (Table 1)

4.4.1 Foraging, early and later Farming Community sites (Map 9)

Few sites of the late Stone Age hunter-gatherers have been located. Major Mother who made archaeological and geological surveys south of the Gwetera in the early 1960s recovered stone hand-axes, arrowheads, and microliths which he dated to the Middle and later Stone Age. He did not report any rock paintings. We have no precise location of his findings since the sketch map which accompanied his report to the Queen Victoria Museum (QVM) in Harare is missing.

Rock art sites were recorded during survey on a hill north of Murchwa Farm (Farm 148, Chesa), and near the Great Zimbabwe tradition site of Ruanga to the south-west of the Mufulurudzi safari area. The paintings are naturalistic in design, and depict hunting scenes. However they were in a poor state of preservation. The painting near Madziwa Mine is under a rock shelter where plain and undiagnostic ceramic sherds were recovered. Another rock painting site is located on the confluence of the Mazowe and Mohamba in the Mufulurudzi safari area. Records in the QVM also indicate the existence of rock paintings in Kandeya communal lands, north of the Ruya.

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>Survey Area</th>
<th>Mfulurudzi</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category of Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Stone Age</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Early Farming Community</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Sites without stone walling

<table>
<thead>
<tr>
<th>Category of Site</th>
<th>Survey Area</th>
<th>Mfulurudzi</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musengezi</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>GS pottery (no imports)</td>
<td>20</td>
<td>2</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>GS pottery (with imports)</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Imports (local pottery undiagnostic)</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Hilltop sites with carinated pottery</td>
<td>21</td>
<td>5</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>19th/20th cent. refugues/battlesfields</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Fe furnaces, tuyere frags, Fe slag</td>
<td>9</td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>11</td>
<td>2</td>
<td>74</td>
</tr>
</tbody>
</table>

Sites with stone walling

<table>
<thead>
<tr>
<th>Category of Site</th>
<th>Survey Area</th>
<th>Mfulurudzi</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GZ stone walling</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Loopholed stone structures</td>
<td>57</td>
<td>29</td>
<td>8</td>
<td>94</td>
</tr>
<tr>
<td>Other walling</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>31</td>
<td>12</td>
<td>102</td>
</tr>
</tbody>
</table>
River, and in the Shamva district, south of the Mufurudzi safari, but the information on the precise location and nature of these sites is not provided.

There is a sizeable number of sites with pottery of the early farming and iron using communities (Early Iron Age). Swart Resettlement Village on the east bank of the Mupfuri River measures approximately 200 metre-square. Extensive iron working remains have been located to the north of the site. At Madzinga Farm (site 1631DC47 in Farm 18, Chesa), a site with similar pottery has been partially exposed by a tributary of the Mutondwe River. The daga and ceramic remains cover a radius of approximately 25 m. The pottery from these sites is comparable to that recovered by Garlake (1969b) at Chitope, near the Gungwwe Gap, on the Great Dyke, and by Pwiti (pers. comm) in the Dande area. It is broadly dated from the 12th to the 15th century. A fallow field on the south-eastern foot of Mt Fura yielded similar pottery but the extent of the material seems to be limited.

At Hwenjere Farm (site 1631DC48) (Farm 16, Chesa) 22 sherds were recovered in a fallow field. Of these 20 were of the Early Iron Age, while 3 other sherds were graphite burnished, but it is not clear whether they could be ascribed to the Great Zimbabwe tradition. Other sherds were plain, and undiagnostic. This site had a mixed assemblage. At Baranda, pottery attributed to the early farming communities has been recovered in the lower levels of pits XXVIII, XXIX, XLVI and XLVII, and Trench I/a but has not been dated as it was mixed with later material.

There is a notable absence of sites of the Musengezi sub-tradition (defined as a regional variant of a broader, not fully defined cultural entity. Musengezi and Harare should not be regarded as separate traditions). The character of the pottery is described elsewhere (Pikirayi 1987), but typical is the use of a wrapped fibre core to decorate the vessels. In the research area this pottery has been reported from five sites (1631DC15, 1631DC16, 1731BA01 [Ruanga], 1731BA02 [Rataplan] and Baranda. Details of site size are not available as some sites (for example 1631DC15 and 1631DC16) are only known to the museum because of the pottery recovered from them, and no follow up surveys were made, while at Ruanga and Baranda (see below), Musengezi pottery was found stratified below cultural material of the Great Zimbabwe tradition. Estimates of the original settlement size have not been made. However, details relating to Musengezi sub-tradition settlements has been documented in the
Centenary area, about 50 km west of the Mt Darwin research area (Soper & Pwiti 1988). Here the sites represent the basic population of the area which was eventually occupied by a Great Zimbabwe tradition population.

4.4.2 Sites with graphite burnished pottery (Map 10)

Archaeological surveys in the ploughed fields of Chesa communal and small scale farming areas revealed a number of sites with small to large scatters of highly graphite burnished pottery. Small concentrations of this pottery were found between Chomagora School and the source of Mutondwe River, west of Farm 7 (Baranda). The sites have however been destroyed by continuous ploughing. However they seem to be placed near stone walled enclosures of the Great Zimbabwe tradition, two of which have been identified in the Chesa area of Mt Darwin during survey. The pottery scatters were found mostly close to termite mounds which served as useful indicators of the location of such sites, and measured approximately 10–15 m across.

Site 1631DC42 (Bhasikiti Fields, Chesa Communal Lands) is an open daga and ceramic scatter situated on both sides of the Mt Darwin-Rushinga main road. It was surveyed following reports of blue and white porcelain in the fields. South of the main road the site stretches across three ploughed fields. The land slopes gently towards the Mutondwe river less than 1 km to the south-east. Soils are sandy, light greyish to dark brown, becoming darker towards the Mutondwe River which is flanked by a vlei. Across the east-west trending road to the north, less than 300 m from the former, is another concentration of pottery covering two agricultural fields. It is not clear whether these scatters were part of a single site complex, as the area separating them is now covered by a village.

Traces of daga and pottery were found close to termite mounds. Most of the pottery has been fragmented by continuous cultivation. However the small sherd recovered show that a high proportion of the assemblages from both fields is graphite burnished. Some sherd had alternate bands/panels of graphite burnishing and red slip. This pottery is comparable with that recovered at Baranda, about 4 km to the south, and nearby farms. The size of the scatters is difficult to estimate, but the scatter to the south side of the road approximately measures 150 m across, while that to the north was largely obscured by crops.

Site 1631DC40A (Farm 148 Murehwa Farm, Chesa) is
now a ploughed field, on open ground sloping northwards to a stream flowing east. The site was visited following reports of blue and white porcelain. Local ceramic material and iron slag were some of the material recovered. It is extensive, covering an area of at least 400 m east-west by 500 m north-south at an elevation of 960 m above sea level. Also found on the site are an eroded ash midden, circular house remains and the possible remains of a square house. Excavation is no longer possible because the site has largely been destroyed by ploughing. Soils are sandy to clayey, reddish to grey to grey brown. The overall artifactual density is light. Most of the sherds randomly collected had a high proportion of graphite burnishing. This is comparable with that recovered at Baranda, about 3 km to the west, and at Bhasikiti Fields.

Site 1631DC45 (Farm 5, Mukweveri, Chesa) is in a ploughed field about 100 m long (east-west) and 50 m wide (north-south). The elevation is about 990 m above sea level. The site is to the east of the farm, about 1.5 km east of Farm 4, across the head waters of a stream flowing south. The site was visited following reports of blue and white porcelain. The visibility of artifacts was low because of the tall grass in fallow and unploughed areas. The soils are sandy to rocky, and light brown in colour.

The pottery scatter is moderate to heavy. The site should be investigated in the context of the main developments at Baranda and Kapfura, and I believe that it was a peripheral part of the site complex.

Further south at Rataplan Resettlement Scheme (Zvataidz Village, Ward 4), south-west of the Mufurudzi safari area two ceramic scatters, about 10 m in diameter, were found about a kilometre from each other. One site is within a household of a resettlement village, 940 m above sea level, and was exposed during the construction of houses. The soil in which the sites are found is sandy in texture, light to reddish-brown in colour. The pottery recovered from the two sites is highly graphite burnished, and of the Great Zimbabwe tradition as Ruanga is only 2.5 km to the north.

4.4.3 Sites with graphite burnished pottery and imports (Map 11)

The largest site with graphite burnished pottery and imported ceramics and beads of the 16th and the 17th centuries is found primarily in Farm 7, at Baranda, but also spreads into neighbouring farms (Farms 3 to the south, 4 to the east, 5 to the north-east, and 8 to the north.

Map 11. Sites with imported pottery. Squares represent field sites with graphite burnished pottery and triangles indicate loopholed stone structures where imported pottery has been found.
north-west and west) (see Map 11; Plate 4). It is described in detail in Chapter 5. There are other sites with similar material, which are however markedly smaller in size. These are 1631DC27, 1631DC46 and the Duke of Cornwall Mine.

Site 1631DC27 in Farm 2, Chesa is an open site, and like Baranda which is only 3 km to the north, had connections with the Indian Ocean trade network during the historical period. The site is about 20 m to the south of the farm homestead in a cultivated field sloping to the Mukaradzi River to the south. The field has been under cultivation since 1958, but excavation is still possible. The site elevation is 870 m and occupies an area of about 40 m in diameter. Its stratigraphic context and depth is unknown. The soil is sandy with numerous stones, mostly quartz and schist. To the west of field the soil becomes a sandy texture and dark brown in colour. The site has a dense daga concentration forming a small mound about 10 m in diameter. Found on the site were some charcoal mixed with light brown, grey plain pottery. A few sherds were graphite burnished. Few fragments of blue and white porcelain, earthenware, stoneware and green glass dating approximately to the 16th and 17th century (Wilding; Wright; pers. comm) were also recovered from the site.

This site was identified by Hendrik Ellert in 1988 as Massapa. A revisit to the site by a team from the University of Zimbabwe showed that the extent of the remains was not consistent with the documentary evidence pertaining to Massapa.

Site 1631DC46 (Mandishora/Nyanudo, Chesa) is in a ploughed field located to the south of Farm 17 homestead, and about 2 km north-east of Baranda. The field stretches for about 200 m south from the homestead, and for 150 m east. There are no visible features on the site except termite mounds. Only one grinding stone was located. This farm is about 980 m above sea-level. A seasonal stream runs 300 m due west of the site. The soil is sandy clay and greyish brown in colour. The vegetation is predominantly grassland as the site is very close to a vlei. The reddish colour of the soil made it difficult to see the artifacts on the ground. The state of preservation is appalling. The late farm owner informed the author that the field yielded numerous pieces of imported ceramic material when it was ploughed in 1959. Only 7 sherds, lumps of daga and a piece of blue and white porcelain dating to the 16th and 17th centuries (Wilding, pers. comm) were recovered from the field. The pottery has a high proportion of graphite burnishing.
The environs of the homestead of Guzha Farm (1631DC9, Farm 139, Chesa) were surveyed following reports of porcelain from an ant-hill near the tobacco shade. The homestead, built on a gently sloping area to the vlei in the south, is surrounded by ploughed fields, and the chances of seeing the artifacts were reduced by the cropping. Guzha Farm is adjacent to the Mt Darwin-Rushinga road, 16 km from the Mt Darwin service centre, and 6 km as the crow flies from Baranda. A piece of white porcelain with transfer printing designs in bluish green combined with strong purplish blue, was picked up together with a piece of plain white porcelain. The sherds have been dated to the late 18th or the 19th century (Wilding, pers. comm.). No local ceramic material was found in association with the imports.

There are earlier reports of other sites with imported ceramic material, but the local material, especially the pottery is not adequately documented to permit a comparison with sites dated during survey. Hobson (see above) reported the existence of some imported pottery and glass near the Duke of Cornwall Mine in 1932. The local pottery found together with the imports is now housed in the QVM in Harare, but a preliminary examination of the material did not yield any conclusive results. A follow-up survey to one of the sites reported by Dr Judy Maguire in the lower Gwetera (see section 4.2) only produced a thick (9 mm) reddish brown plain body sherd, highly tempered with quartz. This is probably a non-site occurrence.

A summary of sites in the research area with imported material is presented in Table 2.

Table 2.

<table>
<thead>
<tr>
<th>ARCHAEOLOGICAL SITES IN THE RESEARCH AREA WITH IMPORTED WARES</th>
</tr>
</thead>
<tbody>
<tr>
<td>site</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>open field sites</td>
</tr>
<tr>
<td>Baranda</td>
</tr>
<tr>
<td>Farm 2</td>
</tr>
<tr>
<td>Farm 17</td>
</tr>
<tr>
<td>Farm 139</td>
</tr>
<tr>
<td>stone structures</td>
</tr>
<tr>
<td>Muchekayeswa</td>
</tr>
<tr>
<td>Chenguvarwe E</td>
</tr>
<tr>
<td>Chenguvarwe U</td>
</tr>
<tr>
<td>Beryl Rose Mine</td>
</tr>
<tr>
<td>other</td>
</tr>
<tr>
<td>Duke of Cornwall</td>
</tr>
<tr>
<td>Lower Gwetera</td>
</tr>
</tbody>
</table>

4.4.4 Unwalled sites hilltop sites and burials (Map 12)

There are unwalled sites mostly on hilltops or prominent positions. The pottery from these sites differs significantly from that recovered from sites such as Baranda, Bhaskit, Murehwa Farm and Nyamudo (Farm 17) which is highly graphite burnished. Instead, the sites have largely undecorated hemispherical to deep straight sided bowls, globular shaped jars with insloping rims, and vessels with a concave neck and a well defined corner point.

These sites vary in size from small scatters of daga and pottery 2-10 m across to large settlement units probably accommodating more than one family. The pattern of refuse disposal is similar to that observed in loopholed stone structures. The absence of stone walling somewhat dictates the size of these sites, for where stone for building is plentiful, settlements tend to be larger. However, there are exceptions, for example at Murehwa (Farm 148, Chesa), and Guzha (Farm 139, Chesa) farms, and one site in the Mufunudzi safari area, where entire hills were occupied with little or no use of stone walling. Often found close to these sites, and also near loopholed stone structures are rock crevices partly filled with stone slabs, and with up to four complete pots on or close to them. Alternatively stones are arranged in a circular to oval platform, 2-3 m across, on which ceramic receptacles are placed upside down. None of these sites has been investigated, but I suspect they are burials, for some Musengezi sub-tradition sites such as those found in the Centenary and Mbagazewa area further to the west, reflect a similar setting.
The biggest site of this kind recorded during survey was 1631DC40B on a hill to the north of Murehwa Farm. The hill is difficult of access especially from the south and east, but is easily approached from the west. It is a granite formation, 960–980 m above sea level, about 30–40 m high from the general ground level, and trending north-south. Bvuma hill to the north east, is a dolerite formation, and has the highest point, slightly over 1100 m above sea level. The whole hilltop was settled extensively, covering dimensions of 300–400 m (north-south) and 100–150 m east-west. Daga remains, stone platforms, iron slag, ceramic scatters, grinding stones, and ash midden were visible. The soil is dark brown in colour. *Brachystegia boehmii* is the dominant tree species, while grass cover is dominated by *Heteropogon contortus*. Threatening the site are the burrowing animals, the roots, overgrowth and some erosion. Pole impressed daga and daga floor were recorded in 16 locations, bowls and pots with a carinated profile in 8 concentrations, and ash midden in three locations. There was one stone platform, and 8 locations where grinding stones were identified. These cultural objects/features can actually be separated into three/four activity areas each equivalent to a household unit. The area surveyed can thus be said to have housed 3 or 4 families. Part of the hill to the south-west was not surveyed as the grass cover was too thick and difficult to traverse.

Guzha hill (site 1631DC38) is a granite formation rising from a vlei area to the south-west of the Farm 139 homestead, on an elevation of 950–960 m above sea level. The hill does not provide exfoliating granite slabs for stone construction. The evidence suggests that the site may have been used by more than one family. The pottery surface collected from the site was fragmented, but a vessel with a carinated shoulder was picked up at the foot of some boulders in the northern end of the hill. Some traces of daga were also found within the hill. The western side of the hill is now under cultivation, and some potsherds were also recovered from the field. Artifactual remains are found within a distance of 150 m north-south, and 100 m east-west. The soil is rocky gravel to sandy in texture, and greyish to black in colour. The central part of the hill sloping gently to the field towards the west had a thin spread of sherds. The boulders to the east had a probable burial site, a semi-circular stone arrangement 1.5 m in diameter, with two complete pots, a vessel with
a corner point on the shoulder and a bowl. The site has been disturbed by burrowing lizards. Another boulder about 40 m to the east also had a well preserved semi-circular stone arrangement with a carinated vessel on top.

Site 1631DC28 is on a low hill to the south of Mukanradzi River opposite Farm 2. Hill and spur to NNE. It has an elevation of about 920 m above sea level, and covers an area of 100 m across. Recovered were few daga patch-es and local plain pottery including a narrow mouthed carinated pot. Some old mine workings are on the western side. Elliott (nd.) reported more extensive remains but they were not observed when visited by a team from the University of Zimbabwe in 1988.

A slightly different picture is found on a site in the Mufurudzi safari area, on a granite hill, 800–820 m above sea level to the north west of Gwiranenzarai mountain. Here were found limited stone walling. The slopes to the east, west and south of the hill are steep but the north side is fairly gentle, and the site is easily accessible from this direction. On the site is some stone walling, a small concentration of ceramics and daga, and an ashy midden. The site occupies parts of the base of hill, a hill slope and the entire hilltop. The state of preservation is very poor especially in the case of the stone walling. Up to 20 concentrations of pole impressed daga have been recorded on top of the hill. The main settlement area was screened by a curved wall to the north, now completely collapsed. A well preserved ashy midden is located immediately outside the north-west section of the walling. The site measures 35–40 m east-west, and 20–25 m north-south.

Smaller sites have been recorded in the Chesa area, especially in Farm 3, and the hills and mountains to the west of Mt Fura. Site 1631DC33 in Farm 3 is on the hilltop, at an elevation of 940 m above sea level. It is situated on a knoll covered with Brachystegia-boehmii. The soil is reddish brown in colour and the surface is rocky. The knoll has a radius of about 20 m and has a generally level surface. Finds include daga and plain local pottery.

On the same farm is an open settlement site (1631DC34) to the eastern side of a stream draining into the Mukanradzi. The elevation is 920 m above sea level. The density of ceramic material is considerable. The site measures about 25 metre radius. Concentrations of pole impressed daga indicate a cluster of houses. Sheds with a corner point on the shoulder have been found. Two middens which are situated 10 m apart. each measure 5 m in length and trend east-west. These middens are to the northern end of site.

Considerably smaller scatters were recorded in the hills and mountains to the west, and also to the south-east of Mt Fura. These sites seem to complement nearby loopholed stone enclosures where similar ceramic and daga material have been found. Possible burial places were found near unwalled and stone walled sites. Those in Guzha Farm have already been described above. At least four locations have been found near the enclosures on Chenguve Hill (see Chapter 5). One site in a granite hill east of Chomogora school is less than 1 km away from a loopholed stone enclosure.

A well preserved burial site was located on a termite mound, near the Ruanga River, in the Mufurudzi safari area. It had an oval shaped stone arrangement with 4 pots on top, 3 of which were inverted. The pottery includes 1 large bowl, graphited (black topped) and 3 small necked vessels. The ware is similar to that identified in loopholed stone structures nearby to east. The site measures about 2.6 metre square. The pottery is surrounded by flat stone slabs, some of which are stuck into the termite mound. The black topped bowl has a maximum diameter of 20 cm while the other small pots have its maximum diame ters ranging from 14 to 18 cm.

4.4.5 Stone walled enclosures (Maps 10 and 12)
There are at least two types of stone walled enclosures in the research area. First there are enclosures built with the architecture similar to Great Zimbabwe, and these sites are discussed in detail in Chapters 5 and 8. Two such sites have been located in the research area (see Map 10; Plate 5), but a third is located about 30 km north of the Ruya River (see Map 14), in addition to the already known Great Zimbabwe tradition site of Ruanga to the south. Secondly, there are enclosures of an architectural style different from that used at Great Zimbabwe tradition sites (see Map 12). These enclosures have loopholes (Plate 6), and are built on hills or mountains difficult of access (see for example Plate 3). Architecturally, they bear some resemblance with those found in the Nyanga highlands (Summers 1958), but their layout and construction are simpler (Plate 7). Excavated enclosures on Muchekaya and Chenguve hills revealed some imports (see Map 11). The sites are discussed in detail in Chapter 5.

4.4.6 Nineteenth century refuges and early twentieth century battlefields (Map 12)
Two sites in the Ruya Valley are dated to the 19th century or early 20th century because of events relating to them. A cave 'refuge' site (1631DA09) 500 m south-east of Chimimba (Ruva Adventist Secondary) School, 4 km north of Mt Darwin service centre is dated by oral tradition to the 19th century (Emmanuel Chikwira, pers. comm.). A narrow tunnel opens up on the top of the hill, and this seems to have been closed by stone slabs collected from the hill. An informant who has been in the area since the mid 1970s told us that the area was used by hunters who obtained gun powder or bullets from a
Plate 5. Great Zimbabwe tradition stone wailing, Matanda Farm, Chesa SCFA.

Plate 6. Loophole, Dombomaronbe Hill.
nearly hill to the west called Magoche. The bullets were supplied by a Portuguese or Englishman residing on the west side of Magoche Hill in exchange for wild animal tails. This man was a district commissioner known locally as 'Pari'. There seems to be confusion in the oral information which generally point to the period of the British occupation of northern Mashonaland, and the corresponding loss of Portuguese influence in the area. This site would therefore post-date 1890.

Ruya Primary School (site 1631DA08) 5 km north of Mt Darwin service centre is the site of a battle fought during the early colonial period. Remains of human bones are reportedly seen during the construction of buildings. About 35 British South African Company Rank medals and one iron arrowhead have been recovered, and are in the custodianship of the school headmaster. One medal has a 1903–1904 date, plus an inscription: B.S.A. Co. 1903–4. DISTRICT V.

4.4.7 Charcoal mounds, slag concentrations and iron furnaces (Maps 9 and 13)

Archaeological surveys in the research area have also revealed numerous charcoal mounds, iron slag concentrations and remains of iron smelting furnaces. They range in size from 5 to 12 m in diameter, and from 20 to 40 cm in height. Most mounds have been levelled by ploughing. Associated with most of these mounds are iron slag concentrations and remains of iron smelting furnaces, so much that these mounds are probably the work of iron smelting blacksmiths. The mounds have not been dated, but they appear to be recent, probably 19th or early 20th century. The charcoal mounds, slag concentrations and iron smelting furnaces are found almost exclusively within the shapa (sandy) soil belt of the research area. Detailed surveys were conducted in the Chesa small scale farming area (see Map 13). Table 3 gives a summary of the mounds recorded in the area around Chenguruve Hill, Farm 7 and adjacent farms.

Mounds, just like charcoal pits, constitute a storage area for the charcoal ready for transfer to the smelting site. Essentially wood charcoal was used. When wood is heated in a closed atmosphere so that it cannot burn, wood charcoal remains and vapours containing methyl alcohol, acetic acid and acetone, together with an inflammable gas are evolved. This process is known as destructive distillation of wood.

This explanation has not been experimentally demon-
Map 13. Area covered by charcoal mounds. Although the soils of the research area have not been mapped, the mounds are always found in areas of light greyish sandy soils locally known as shapa or mashapa. Unsurveyed areas to the north and east are expected to reveal more mounds.

Illustrated in the case of the charcoal mounds in question, but it is a practical possibility. Most probably wood was initially ignited and when it began to burn, was immediately covered by sand. The wood then burnt in a reduced atmosphere using up all the available oxygen to form carbon instead of ash.

Extensive surface and stratified scatters of iron slag have been identified from three localities, one immediately to the south-west of the boundary of Farm 3 and probably associated with the charcoal mounds very close to it, the other has been recovered as part of excavated material in Farms 7 and 8 (test-pits XLVII–LVII and Trench I and Ia), and the third at Swart Resettlement Village site on the east Banks of the Mupfurii River, a tributary of the Ruya (see Map 9). The latter two occurrences are of considerable extent. In test pits XLVIII and LI at Baranda this material has been found associated with the remains of a furnace. The concentration to the south west of Farm 3 is about 10 m across and is associated with a daga scatter.

Table 3.

<table>
<thead>
<tr>
<th>Summary of charcoal mounds found in the research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
</tr>
<tr>
<td>Chengurwe Hill</td>
</tr>
<tr>
<td>Farms 7/8/11</td>
</tr>
<tr>
<td>Farm 17</td>
</tr>
<tr>
<td>Farm 26</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>
At Swart Village, the iron slag concentrations which cover an area of about 40 m radius are associated with large tuyèrè pieces and probable furnace sites. As indicated above the pottery recovered from the site has provisionally been attributed to the terminal early farming communities, but it is not clear whether they were responsible for the iron working, or whether this was a much later activity. Iron slag was recovered at Madzinga Farm and the site on the south-eastern foot of Mt Fura, but this is not comparable in size and extent to the material recovered at Swart Village. The name ‘Mupfuri’ literally means one who works with iron (‘blacksmith’), and it was possibly through this activity in the past that the river eventually earned its name. Only scientific dating of the remains and oral traditions pertaining to the Mupfuri River will solve this problem.

Apart from the two furnace sites identified in stratified contexts, surface occurrences which were certainly smelting furnaces have been recognized in the area. These include the eastern part of Chenguruvu Hill, Kapfura Farm (or Farm 4), and Farm 17.

To the east of Chenguruvu Hill is a loopholed stone structure within a group of boulders. About 15 m to the west of these boulders is a pit, 2–3 m across and about 1 m deep. A collapsed daga feature is located at the bottom of the pit, and is associated with a few lumps of iron slag. It is probably an iron smelting furnace. A charcoal mound 5–6 m across is located immediately outside the pit to the south-west.

A well preserved iron smelting furnace with a structure and features resembling the body of a woman is located within the granite hilly area to the east of Farm 4. This is a low-lying area of the farm, on the headwaters of a stream flowing south into the Mukaradzi. The furnace is associated with a slag heap and two charcoal mounds about 20 m to the south. The furnace is largely intact, only the top part is broken. The ‘breasts’, the position of the blow pipes, tuyèrès, the lower part of the chimney and the slag outlet are still intact. The base diameter of the furnace is about 60 cm, its height is 20–25 cm, while the thickness of the chimney or fuel outlet tapers to 10 cm. The slag heap, which is about 1.5 m to east of furnace measures 4–5 m (north-south) by 9–10 m (east-west).

A tuyèrè fragment about 2 cm long was found in a field in Farm 8 close to a charcoal mound. An iron smelting furnace was probably close by but could not be located. Some iron slag has been found 30 m north of yet another charcoal mound.

Tuyèrè fragments and pieces of iron slag were found east of Farm 17 across a stream flowing to the north and to the south-west of the ploughed area. The site is close to the source of the stream, in a woodland area. The furnace site was completely destroyed, and only iron slag and tuyèrè fragments remain. A charcoal mound is located 15 m to the west, partially covered by a thicket. It is about 3–4 m in diameter and 30–35 cm high. The ground slopes gently to the stream to the west and south-west.

In Farm 148 (Murelhwa Farm, Chesa) six tuyèrè fragments together with four lumps of iron slag were recovered. The fields around the farm homestead are scattered with highly graphite-burnished pottery, probably of the Great Zimbabwe tradition.

4.5 Some observations on cultural succession in the research area

The Great Zimbabwe tradition was established in the research area as is evidenced by stone walling of the architecture typical of the tradition. This probably happened sometime before the historical period. Probably the unwalled sites with scatters of graphite-burnished pottery were also settlements of the tradition, and that some of them continued to exist during the historical period, and others became part of the Indian Ocean trade network as is evidenced by the imports found in them. This point will be highlighted in Chapter 7 where the ceramics are analysed.

Great Zimbabwe tradition sites seem to have been established in an area with a small Musengezi population. From the distribution maps presented above, low granite hills and surrounding light grey sandy soils were preferred, as opposed to high dolerite and gneiss hills or mountains dominated by reddish brown rocky to gravelly soils.

There is an increase in the number of sites in the research area, especially hilltop sites with carinated pottery. The majority of these sites are stone enclosures with loopholes, but there is a fairly large number of sites without stone walling. These sites, as will be shown in the case of Muchekayawa and Chenguruvu hills, date to the historical period. They are partly contemporaneous with some Great Zimbabwe tradition sites, but also continue to exist after the 17th century, probably replacing the former.

The archaeological data presented above can answer at least the question of what happened to the Great Zimbabwe tradition in northern Zimbabwe during the historical period, and how it relates to the Mutapa state. Available historical accounts from the beginning of the 16th century which can assist in understanding some important cultural changes in the research area, and how these can be connected to archaeology. This will be dealt with in Chapter 6.
5. EXTRACTING THE DATA: REGIONAL INTER-SITE AND LOCAL INTRA-SITE APPROACHES

5.1 Introduction

More archaeological data for an understanding of the Mihapä state is presented in this chapter. The information is given at two levels of specificity in order to address two problems posed in Chapter 1. The first level of discussion places the research area into a broader regional context, and addresses the problems of Afro-Portuguese interaction by examining the material culture associated with trading places in northern Zimbabwe. In addition, Great Zimbabwe tradition sites in the region are discussed. To understand the status of the so called ‘Refuge Period’, loopholed stone structures are examined within the same regional context. The term ‘Refuge’ has been used to characterise the period from the 16th century to the present, but as pointed out in Chapter 1, this has resulted in a failure by both archaeologists and historians to comprehend the political and social transformations of state and non-state societies during the period ending in the 19th century. The last section of the chapter focuses on three excavations in the research area, aimed at extracting information on the character of archaeological sites dating to the historical period.

5.2 The regional scale

5.2.1. The Great Zimbabwe tradition sites

An analysis of the distribution of Great Zimbabwe tradition sites on the plateau was made by Sinclair & Lundmark (1984). Sinclair (1987) commented that the sites were to be found in buffer zones between Harare and Musengezi sub-tradition sites. Soper (1989) discussed the socio-political status of the sites in northern Zimbabwe. Since then three more stone structures have been located in the region. Soper (1989) listed 4 clusters of stone enclosures and 6 single sites (see Map 14). Clusters were defined as sites occurring within a radius of 10 km or less, and single sites as those occurring at evenly spaced intervals of 60 to 100 km from each other (Soper 1989, p. 2). The stone structures are neatly coursled using granite, have an irregular plan and incorporate houses of solid daga (see for example Fig. 1). Sites at the foot of the Zambezi escarpment in the Dande area are possibly a later development with an oval or lobed plan and constructed out of ironstone (Robinson 1965; Soper 1989, p. 2; Pwiti, forthcoming). A few enclosures are decorated with either a chevron pattern or a combination of chev-

ron and herringbone patterns. The sizes of the enclosures vary considerably from a single wall 10 m long to complex plans like Tere or Tsindi which are 70 and 95 m across respectively (Soper 1989, p. 3).

As Soper pointed out, the distribution in northern Zimbabwe represented the current state of knowledge and could not be regarded a complete pattern; smaller sites in particular may have gone unrecorded. He also indicated that a proper consideration of the distribution of these sites should incorporate settlements of the same tradition but without stone walling; these have rarely been reported due to low visibility. The research in the Centenary area has addressed the local cultural context of such sites, while in south-central Zimbabwe, details of how some of these sites functioned is known (Sinclair 1985a).

The Great Zimbabwe tradition sites in the region have been dated mostly to the 14th and 15th centuries but there is substantiated evidence of continuity into the historical period (see below). The sites are broadly contemporary with other sub-traditions of Harare and Musengezi rep.
resenting the basic populations of the region (Soper 1989, pp. 5–7). The distribution of the Great Zimbabwe tradition sites covers parts of the sub-tradition of both Harare (Thomson 1988, pp. 29–36) and Musengezi (Soper & Pwtit 1988, pp. 16–20; Soper 1990, pp. 67–75).

A number of explanations have been proposed for the distribution of these sites at the regional level. Hall & Neal (1962) and Summers (1971) saw these zimbabwe as corresponding to the central gold belt and some of the ancient workings, and proposed that the desire to control gold production and trade resulted in a much wider distribution of the sites on the plateau. Garlake (1978, pp. 479–93) proposed that larger sites were ‘centres’ located on the plateau margins and dependent on a pastoral economy in which cattle were moved seasonally from the higher to the lower areas of the escarpment following seasonal changes in the palatability of the veld. In this case lowveld areas with sweetveld could be used in winter when the tsetse fly was dormant, and the cattle moved gradually to the higher areas, through mixed to sourveld as the seasons changed. Garlake’s hypothesis has not been substantiated by evidence of cattle posts in the highland and lowland areas that would support this model, and it is also difficult to account for other sites in the higher parts of the plateau as they do not fit properly into the locational parameters proposed (cf. Pwtit 1985, 1990).

A clearer definition of centre is required. Sinclair (1987) used anthropological models of state organisation and proposed that the zimbabwe were revolving centres of political power, stressing an agricultural base of their economy at the same time acknowledging the importance of cattle but managed in a limited scale in terms of distance.

At the local level stone structures are sited on small hills and rock outcrops in open areas devoid of broken country. These locations are easily accessible and there is no evidence to suggest that they could have served a function related to defence.

The pottery associated with Great Zimbabwe tradition sites includes a high proportion of vessels with a fine graphite burnish. Other decoration is rare but distinctive. This pottery from northern Zimbabwe is directly comparable to period 4 pottery, correlated with the main developments associated with the climax of cultural development at Great Zimbabwe in the south.

The field work in Mt Darwin has revealed a further three Great Zimbabwe Tradition sites with stone walling which show closer spacing than Soper’s (1989) perception of evenly spaced sites or clusters 60 to 100 km apart. Chomagora and Matanda sites are 8 km apart and could represent a ‘cluster’, but they are only 25 km from Runganwa while the third site of Ngome in the Nwedza area is some 30 km to the north. Similarly, while the available dating of the stone enclosures, admittedly inadequate and imprecise in most cases, suggest little stone building beyond the 15th century, the Baranda site supports continuity of the tradition, without stone walls, at least to the 17th century. The larger question of what these sites represent in social, political and economic terms is crucial towards an archaeological understanding of the Mutapa state.

5.2.2 Loopholed stone structures and related sites with hilltop location

This section uses part of the survey results presented in Chapter 4 and museum data to examine another set of data on a regional level. The stone structures described here are of an entirely different architectural style from the Great Zimbabwe tradition sites. Fuller details are found in a working paper (Pikirayi 1991). What these sites were, and the cultural period they represent, is also part of the overall investigation on the archaeological identity of the Mutapa state.

The identity of the builders of loopholed stone structures has been a subject of speculation ever since the sites were first reported in the mid 1950s. There has been some attempt to link them with the Portuguese (Axelson 1956, pp. 7–12) or with the late 18th and 19th century so called ‘Refuge’ phenomenon connected with the emergence of defensive hilltop sites as a direct response to both internal and external threats generated by civil wars and invasions (Whitty 1959; Summers 1971). The present state of archaeological evidence suggests they belong to a different tradition altogether, and they may help in explaining the demise of the Mutapa state.

Character of loopholed stone structures

Architectural detail

Loopholed stone structures are characterised by an irregular circular, semi-circular or oval plan usually dictated by the general appearance of the hill on which they are sited (see Figs. 2 and 3). Most enclosures accommodate houses almost exclusively of pole impressed daga.

Any courting is rough, irregular and uneven. The stones used are undressed. No mortar was used. There is no particular preference for the type of stone used, and all available material was either surface collected or quarried immediately on the site to erect the walls (see Plate 8). None of the enclosures have decorative stone work in the sense of the Great Zimbabwe Tradition sites but the majority have loopholes. Loopholes are small, square openings with the length of the thickness of the enclosure walls. The average size of a loophole is 20 centimetre square and they are often built at a height between 0.4 and 0.5 m above the wall foundation (Plate 6). Their numbers vary from site to site, with some
enclosures having none recognisable. The average number of loopholes per site is 5 or 6. The maximum number recorded to date is 18, from a site in Sipoteki Hills, south-east of Mt Fura. Two other sites in the Mufurudzi Safari area had 13 and 14 loopholes respectively. Previous researchers have commented on the function of loopholes (Randall-Maclver 1906, p. 4, p. 7; Caton-Thompson 1931, p. 132; Summers 1958, pp. 238–40). Written sources report of the use of loopholes in the Zambezi valley in connection with the wars of the late 16th and the early 17th centuries (see Chapter 6).

Wall height varies from 20 cm to 2 m. Average wall height is 1 m. Walls have a uniform thickness from top to foundation level and the measurements obtained from intact walls range from 50 to 100 cm for most enclosures. The walls rest on either a rock or earth foundation (Plate 9).

Loopholed stone structures are almost all located on hilltop, hillside or spur locations. Some locations are on mountains, for example Fura and the ranges to the east. Mahonje, Chizinga, Svisvamoyo, Gwiranenzara and Chivhuchevakaranga in the Mufurudzi Safari area. An exception are sites on river valley sides, such as that described by Axelson (1956) close to the banks of the Mazowe about 8 km to the south-east of the crest of Mahonje; and another in the Mufurudzi safari area located in a prominent open area sloping gently to valleys to east and west. The former site had 13 loopholes while the
Key to the site plans of Figs. 2 and 3.

Fig. 3. Plan of Chikobora Farm.

Plate 8. Stone structure on hill south of the Mukuradzi valley showing the schist blocks in situ, some of which were exploited for building purposes.
Plate 9. Stone walling on rock foundation, Domborombe Hill.

Plate 10. Lintelled opening, loopholed enclosure in the Upper Karuwe Valley.
latter had 14. An opening on the latter site measured 40 centimetre square with a rectangular slab of almost the same size besides it leaning on the walls. It was probably used to close this opening (Plate 10).

Some sites are built in a less conventional way. One enclosure on a ridge of Mahonje was built almost exclusively on short upright monoliths possibly reflecting the shortage of building material on the site. Other features include upright monoliths in the centre of some enclosures (Plate 11) and/or parallel lines of smaller vertical slabs arranged in 3 rows also situated within the inside of the enclosure, close to the walls (Plates 12-13). Some of these features have been identified in enclosures on the western end of the ridge of Mt Fura, while one stone structure on Mt Mahonje and a site in the Mufurudzi safari area also had similar features. A closer examination of these features suggests that they supported a platform on which mud structures were then constructed (Plate 14). Other rare features include lintelled doorways most common in Nyanga in the Eastern Highlands (cf. Plate 10).

Plate 14. Vertical stone slabs with grooved top ends, enclosure on western end of Mt Pura.
Map 15. The general area where loopholed stone structures have been found or reported in relation to northern Zimbabwe.

Size

The sizes of the enclosures vary considerably. The largest recorded so far is the enclosure on the summit of a hill north-west of Mt Fura. It has a total area of about 7000 m². The enclosure on Mt Fura is about 6500 m², calculated with the help of aerial photographs (Soper 1988). The diameter of the majority varies from 30 to 50 m with the internal area of the enclosure ranging from less than 700 m² to over 2000 m². This estimate includes the area covered by boulders incorporated inside.

Sample size and survey problems – distribution.

This work records a total number of 94 stone structures known to date, and this includes 57 from the area survey in detail, 29 from the Mufurudzi safari area, and 8 from areas further east and north east. With detailed survey, more sites are expected in the areas not yet covered. The hilly locations of the sites make access difficult, and site surveying is not an easy task. It is unfortunate for the archaeologist that the majority of loopholed stone structures are located in such environments. A detailed survey of Mt Fura has highlighted some of the problems connected with traversing mountain ridges (Soper nd).

A complete distribution map of loopholed stone structures is not yet available, and the museum records cannot be relied upon at this stage. Summers (1971) classifies these sites as ‘hill refuges’ (class 9a) using information from Whitty (1959), and gives a distribution pattern correlating with the area occupied by the Shona on the plateau, east and north of the Ndebele state. However, this appears to be a very broad category including any rough hill-top walling, and it does not distinguish the structures here discussed from, for example, those of Nyanga or the ‘Refuge’ sites widely distributed in other parts of the country. A number of areas in between Mt Darwin and Nyanga such as the Pfungwe and Maramba communal lands, and the lower Ruia-Mzawc basin including parts of Mozambique remain unsurveyed (see Map 15).

The data presented here are largely based on survey work carried out in the Mt Darwin and Mufurudzi Safari areas. Some of the mountains such as Fura and Mahonje in the area show a tight cluster of sites (see for example Maps 12 and 16) while intrusive dolerite hills in the Chesa area may have one or two enclosures. In areas of limited, but broken granite formations, a group of three or
more enclosures may be found within a distance of 2–3 kilometres from each other, for example Dombomarombe or Chinuma, Muchekayawa, Chikohera and Chipunza (Map 12).

Details of the associated pottery is presented in Chapter 7. It has been shown in Chapter 4 that there are unwalled sites with a hilltop location but with pottery similar to that found in loopholed stone structures. They are considered here as part of the same settlement organization.

Radiocarbon and optically stimulated luminescence (OSL) dates some of these sites from at least the 17th century (see Tables 4 and 5). Axelson (1964) suggested a date not earlier than the mid-16th century. We can use documentary evidence to trace the circumstances which might have led to their construction. Most Portuguese written sources from the late 16th century to the 18th century are full of accounts of wars and conflict between the Portuguese and the local people in the Zambezi Valley and adjacent territories (see Chapter 6). Therefore these sites may have been built in response to conflict.

Imported ceramics do not help us much in adequately dating these sites. Some imported ceramic material has been picked up from Chenguve Hill enclosures and also from a loopholed stone structure site at Beryl Rose Mine (now totally destroyed) near the Gwerera valley. This includes Chinese blue and white porcelain. In the case of the Chenguve Hill enclosures the porcelain was recovered from middens outside the stone walls while at Beryl Rose the material was recovered from both inside and outside the site. This material has been dated to the 16th or 17th century. The problem with the imports is that it is difficult to establish the circumstances that led to these sites. Glass beads of the 16th and 17th centuries were recovered from the interior and one midden of the western enclosure of Chenguve Hill.

The hypothesis identifying these stone structures as sites of the Great Zimbabwe Tradition is examined critically in Chapter 8. These stone structures and related sites certainly belong to an entirely different tradition. A Mahonje (Tsawa) Tradition is hereby proposed. It was in Tsawa or Mahonje mountain that the first loopholed stone structure was first described by Axelson (1956).
5.3 Sites connected with Afro-Portuguese trade

We can assume that the majority of trading stations connected with the Portuguese in northern Zimbabwe were built in the area under the control or influence of the Mutapa state. An examination of the local ceramic assemblages at these sites would facilitate an understanding of the material culture of the Mutapa state. The Portuguese came into contact with the court and the inhabitants of the Mutapa state when they penetrated the Zimbabwe plateau at the beginning of the 16th century.

The location of Afro-Portuguese trading centres coincides with the gold belt in northern Zimbabwe (see Maps 6 and 17). However the mode of operation and pattern of these places was established in accordance to the dictates and requirements of the local rulers (Sinclair 1987, p. 161; Bhila 1982).

Museum data and published information on the ceramics associated with these trading centres are used in this section. A broad regional picture is given as a basis for a comparison with the material found in the research area.

A major problem posed here is whether the development of the Mutapa state in northern Zimbabwe represented political and economic adjustments to changing circumstances rather than structural transformation (Sinclair 1987, p. 161), and the extent to which this can be recognized in the archaeological record.

5.3.1 Dambarare earthworks

Dambarare is an area 40 km north-north west of Harare on the central watershed near the Marodzi, a tributary of the Mazowe river. Although more than 6 rectangular earthworks have been located in the area only one has been excavated. The earthworks are located on both sides of the Marodzi stream but mostly on the right bank. They are all visible from one another and are situated either on level ground or on isolated granite hills (Garlake 1969a, p. 26). Documentary evidence has connected the earthworks with Afro-Portuguese trade during the 16th and the 17th centuries. The earthwork excavated by Garlake (1969a) had buildings including a church constructed with brick and burials which reflected a Christian tradition.
The site yielded 3182 sherds of imported wares which included Chinese porcelain, earthenware, stoneware and terracotta. The imported wares date the site from the late 16th to late 17th centuries (1570–1690) and from the early to mid 18th century (1720–1750) consistent with the documentary evidence (Garlake 1969a, pp. 39–41).

Garlake (1969a) analysed 655 local fragmented potsherds. A summary is given here. Forty three percent of the excavated sherds came from the original ground surface and a further 35% from the fill of later graves cutting this surface and incorporating material from it. The remaining 22% of the sherds were scattered throughout the deposits. Most vessels recovered from the excavations were coarse bodied. Fifty percent of the vessels were brown in colour, while the rest were either grey (18%), black (14%), red (10%) or graphite burnished (8%). The rims were simple or tapered, but some sherds had flattened slightly inward bevelled rims, or everted rims. In two cases the rim was slightly thickened and rounded on the exterior. The assemblage has a limited range of shapes which include constricted and hemispherical bowls and pots with tall necks, one roughly made and the other with a concave neck and sharply angled shoulder. Only 6 decorated sherds were recovered from the excavations. All had comb stamping, mostly on the rim or neck. A single graphite burnished sherd had a panel of small diagonal comb stamping impressions above a thin painted red band.

Surface collections were made by Goodall in 1945 in the vicinity of the site. A total of 7 decorated sherds was found, and this includes 3 with stamped decoration, 2 with an irregular stab decoration (punctuates) between grooved lines and one with a band of incised cross hatching. A sherd from a constricted bowl had a discontinuous raised horizontal band applied below the rim bearing fine incision. Garlake (1969a, p. 37) thinks that this sherd is a characteristic vessel of the Barwe Tonga of the Zambezian for similar pottery had been collected from the fort of Massangano at the confluence of Mazowe and Zambezi. Massangano has also yielded 17th century Chinese porcelain and may originally have been a 17th century trading post.

About 500 sherds from Doxford Farm within the area of Dambarare earthworks were examined in an effort to understand the indigenous pottery from the area. The material is now housed in the Museum of Human Sciences in Harare, and comes from a rescue surface collection.
following the construction of a dam on a stream draining to the Marodzi River to the west. Vessels are mostly greyish-brown to brown in colour with only a few well fired red. A small number shows some soot coating. Finish ranges from rough to smooth, and graphite burnishing is rare (see Fig. 4).

Rims are simple, tapered or rounded. The shapes are either simple hemispherical bowls, slightly constricted bowls, necked bowls, or jars with slightly constricted profiles. Decoration appeared in less than 1% of the total assemblage. One sherd had some punctates outside the rim defined by a horizontal groove below. A third sherd had a band of punctates defined on either side and in the middle by three continuous broad lines. Another sherd had three horizontal bands of oblique wrapped fibre impressions separated by grooves on the neck. The first two sherds are comparable with Garlake’s (1969a) sherd 18 (p. 38) which he describes as stab and grooved decoration. Wrapped fibre impressions or motifs have not been reported before from Dambarare. They are characteristic of Musengezi pottery.

5.3.2 Luanze

This was a trading centre, contemporary with Dambarare. It is located on a gently sloping plain on the edge of a vlei, about 160 km to the north-east of Harare, on the watershed between the Nyadiri and Ruenya rivers (Garlake 1967a).

Two almost identical rectangular earthworks were recorded with banks and ditches, the latter dug on the outer perimeter of the earthwork. In addition, there is a rectangular pole and daga structure 225 m north of the earthworks thought to be a church. The whole site measured about 800 m in diameter. Most of the imported wares reported by Garlake were surface collected outside the earthworks and around the church site.

Three trenches excavated on the smaller earthwork produced some glazed and imported wares, glass beads, gold dust and pellets and local ceramics which made 85–90% of the total ceramic assemblage. Written sources date the site from 1580–1680, and this is confirmed by imported wares recovered there.

Garlake recognized close similarity with the pottery from Dambarare. All except three sherds were undecorated, made of fine fabric, free of grit temper and poorly to reasonably well fired. The characteristic vessels had tall vertical or sometimes slightly flared or conical necks. Shouldered pots and plain hemispherical and sub spherical bowls were also part of the assemblage. The excavated material analysed came from levels 5 and 6 of the ditch and level 2 of the midden.

As at Dambarare, rims were poorly developed. There is bevelling and slight beading on rims. Graphite burnish is rare. Of the 3 decorated sherds recovered, one had a comb stamped decoration similar to Dambarare while the other 2 had irregular punctates. Garlake admitted however that at neither Dambarare nor Luanze was he able to define the local pottery adequately.

5.3.3 The Upper Angwa valley earthworks

A group of 6 rectangular earthworks was reported by Goodall in 1945 in the Angwa valley, about 60 km north-west of the town of Chinhoyi. Each earthwork had a rectangular building inside. Architecturally the earthworks are generally similar in plan to those at Luanze and Dambarare but with some important differences. Bastions project at two opposite corners. They are of Portuguese construction. The largest earthwork is 60 m long and 50 m wide and is surrounded by a further bank and ditch about 100 m long by 95 m wide. According to Garlake (1967a) this architectural difference is chronologically significant, with the Angwa earthworks being post-1690 and of early 18th century in date. A few sherds of Chinese porcelain have been found and these include blue and white porcelain with a chocolate glazed exterior of the late 17th century to 18th century. This confirms the dating of the site.

There is no publication on the Angwa Valley earthworks, but a report and plans of the structures in question are available. Goodall (1945) collected local wares from two of the earthworks. The material is now in the Museum of Human Sciences in Harare, and 42 sherds were re-examined.

The average thickness of the vessels is 8 mm. Almost all are quartz tempered, the tempering material being medium to rich in density. All vessels were well fired. The colours range from red to reddish-brown or grey to simple orange-brown. Decorated sherds came from one earthwork (‘fort 2’). The commonest decoration technique is comb stamping but wrapped fibre impressions, stab and drag and punctates appeared as well. There was no band and panel polychrome decoration of the Khama period noticed at Rusvingo WaKasekete although Garlake (1967a, p. 169) claims a sherd of this nature was picked up at one of the earthworks (see Fig. 5).

There was no emphasis on vessel lips which were either rounded, rounded and tapered or slightly out-turned, squared and out-turned and/or slightly bevelled. Neither was emphasis placed on vessel rims. Bowls had straight or slightly in-turning rims. Jars seem to have in-sloping rims and slightly concave necks.

5.3.4 Rimuka

A single rectangular earthwork 66 m long and 54 m wide was identified by Abraham (1961) at Rimuka (Maramuca). It is located on a small kopje on the west bank of the
Suri-Suri about 14 km above its confluence with the Mupfuruc gold belt. Inside the earthwork is a rectangular brick building.

Garlake (1967a) sunk 6 trial trenches and found imported glazed wares (13 pieces of brown and black glazed Chinese stoneware jars of the late 17th century), glass beads identical to those found at Dambarare and Luanze, glass waste and local pottery.

Written sources indicate that the site was established in the 1660s (Abraham 1961). The dearth of finds and the shallow depth of deposits confirm the short history of the site which was abandoned in the 1680s or 1690s.

Garlake (1967a) recovered a small sample of undecorated local pottery from the site. All rims were beaded or bevelled. He compared them to the Luanze material in shape and surface finish.

Garlake has attributed the local pottery recovered at Luanze, Dambarare and Rimuka to a less sophisticated simpler ceramic tradition than the preceding Iron Age traditions, with some typological affinities with the stumped decorated wares of the first millennium AD.

To understand the cultural context of this pottery, we can propose a number of working hypotheses. Firstly, we can assume that the ‘simplicity’ of this pottery shows lack of specialisation in the ceramic craft. Secondly, human interaction at a regional level represents a heterogeneous development. The identification of Tonga vessel in the Dambarare assemblage is a case in point. Thirdly, the pottery may be regarded as coming from ‘peripheral’ assemblages, outside the core area of an established and uniform ceramic tradition. Trading places were established according to the dictates of the Mutapa. With the exception of Massapa, and possibly Bokutu, none of them was located within the core area of the Mutapa state. This scenario was probably dictated by the nature of the gold belt.

One Afro-Portuguese site that has not been discussed in this survey is Massapa. Previous researchers have not been able to identify the site despite claims to that effect. A case is presented in section 5.4 for a site in the research area (Baranda) with evidence for Afro-Portuguese interaction, which on the basis of the current evidence, could be argued to be Massapa, and which provides a fuller picture on the material culture (including ceramics) of the indigenous people during the historical period although no traces of the rectangular earthworks typical of the other Portuguese sites have been identified.
5.4 Case studies

This section presents the data recovered from surface collections, and or geochemical surveys and excavations conducted at selected sites in the research area. The general aim of the excavations was to recover material that could help in the interpretation of the cultural sequence of the sites, while surface collections and geochemical surveys were used to determine artifact densities on a particular site and help determine site function. The case studies presented below are a summary of detailed field reports that will be published separately.

5.4.1 Baranda

Site location – 16° 49' 01"S; 31° 40' 02"E

The site (named after the owner of Farm 7, Chesa) is approximately 8.5 km east of the town of Mt. Darwin, which itself is about 170 km to the north of Harare. It is an open ploughed field with a dense scatter of local pottery, imported earthenware, stoneware and porcelain dating probably to the 16th and 17th centuries, and glass beads in shades of brown, dark blue, light blue, green, yellow and black and sometimes white. Mapping to determine the extent of the site was done by systematic field walking, phosphate sampling, surface collection test pits and one larger excavation. The site extends into four adjacent farms (see Map 18).

Site description

Baranda is on the watershed of the Mazowe-Ruya drainage system. It provides the source of several streams draining into the Mutondwe (a tributary of the Ruya river) to the north, and the Mukaradzi to the south. The latter drains into the Gwetera River further east, a major tributary of the Mazowe.

Map 18. Map of Baranda, general site plan and position of test pits.
The site is about 1.2 km north-south and 1.5 km east-west covering an approximate area of 1.8 square km. The boundaries of the site can be defined to the south and west on the basis of the topography. The northern limit of the site has been defined tentatively on the boundary of Farms 7 and 8 using artifactual fall-out in test pits. The western sections of the site are defined by two vleis which eventually join up to form the Mutondwe river draining to the Ruya to the north. The north-western section is too marshy during the wet season to allow any form of settlement and the site boundary could be within the first 100 metres of Farm 7 homestead. In Farm 4, the limit of the site is immediately after the main farm houses, where the land dropped quickly giving way to patches of marshland and vlei especially during the wet season.

Baranda is well placed for the exploitation of gold resources in the Mukaradzi valley to the south where the gold has been exploited continuously since historical times.

A trench was sunk to investigate the contents of a low mound while one test pit was extended to determine the full extent of a probable iron smelting furnace. No features were identified from the ploughed areas as most of the cultural deposits had been disturbed by ploughing since the late 1950s when the area was opened up for small scale farming. However the jumps of daga recovered in most test pits and units selected for surface collection were clear evidence of former house structures. It was on this basis that an unploughed area was selected for trench excavations since it had not been significantly disturbed.

Baranda probably had extensive external commercial contacts with the Indian Ocean judging by the artifacts recovered from the site. Equally numerous are sherds of local pottery which are often highly polished and graphite burnished. It has typological similarities with Great Zimbabwe tradition Period 4 pottery, and its presence at Baranda could indicate the continuation of the Great Zimbabwe tradition into the historical period, and how it relates to the historical Mutapa state. The possible relationship to, or identification with, the Portuguese site of Massapa will be discussed below.

Archaeological fieldwork started in the area in 1989, and since then a number of sites with imported and local material have been recorded (see Map 11). Baranda is the largest known field site with imported material in northern Zimbabwe. These imports are associated with graphite burnished local earthenwares which far outnumber them.

The site was chosen for detailed examination because apart from its size, there was need to understand the spatial structure of the past settlement at the site and its immediate surroundings by applying a systematic investigation through surface collection, excavation and geochemical survey of the sub surface soil samples. Baranda is a clear example of Afro-Portuguese interaction. Datable artifacts provide a clue towards understanding archaeological sites that may be of the historical Mutapa state.

Environmental surroundings
The geology of the research area has been discussed in Chapter 2. Granite rock surfaces appear on the central, western and southern parts of the site and granite is the dominant geological rock underlying it. About 1.5 km to the south-west granite rock re-surfaces at Chengunwe Hill and on it two looped stone structures have been constructed. This granite is a limited intrusion in a predominantly gneiss plain to the north, and in schist mountain formations to the south (see Map 5).

The soils of the site are light to dark greyish sandy, formed on granite rocks. In the southern half of Farm 4 the soils are greyish to reddish brown sandy clay loams, also formed on granite rocks. The profile is fairly deep in most places except near exposed granite surfaces. The soils are highly leached and acidic.

The wooded grassland savanna vegetation on the site has largely been cleared for cultivation. Thorny species have invaded some of the areas which have been cleared for farming and the commonest ones are Acacia microthyrsa (mubayamondona) dominating vlei areas, and Dichrostachys cinerea (maparangara), while Floucuria indica (munhunguru) grows in well drained rocky areas. Syzygium guineense (mukate) and its sub species and Bauhinia petersiana (mun'ando) occur in patches to the north-west, the central vlei in between Farms 4 and 7, and at the source of a stream south of the homestead of Farm 3. The grass cover is very thin in woodland areas where growth is limited by tree cover, but considerably thicker in open unploughed areas and vleis. Four grass types have been identified and these dominate the site: Hypatheria dissoluta, H. filipendula, Schizachyrium jefreyi and Heteropogon contortus.

The data
The data from the site was collected over a period of nearly five months from August to December 1990. Initially the site was systematically covered by walking first east-west, and then north-south to locate surface or any other indications and establish the extent of the site. Particular attention was paid to the general distribution of local pottery and imported artifacts. The site was then plamed using a theodolite (Plate 15). This facilitated successive stages of investigations on the site (Plates 16 and 17).

Geochemical surveys
Phosphate mapping was carried out to determine the pattern of sub-surface features and help locate where to exa-
Plate 15. Banda, mapping the western section.

Plate 16. Controlled surface collection in progress.
vate. Sometimes it is unreliable to use surface ceramic scatters as indicators of site extent especially in wooded grassland areas where they may not be visible. It was also necessary to assess the potential of the technique in the highly leached light to dark grey basic soils of northern Zimbabwe. To obtain maximum results, a pedogenic history of the site is necessary. This is then complemented with data on site formation processes.

The site was divided into 50-metre survey squares as an initial working grid, but this was later refined to smaller survey units 5-metre square to facilitate controlled surface collection of artifacts. Over 250 soil samples were collected at a systematic spacing of 50 m but the gap was later narrowed to 25 m for the central parts of the site. Samples were taken at depths of 10–20 cm. The presence of phosphates was determined using the spot test method (cf. Clark 1990; Green 1988). Multiple tests can be performed at any one time and the method is quick, giving immediate results. The results are presented in Chapter 7 (Map 27). Generally, there is limited occurrence of positive values especially on dense artifact scatters. The whole site gives low values, which are not consistent with the distribution of surface remains.

The negative picture presented by the results can be explained by continuous disturbance of the main activity areas, soil erosion which is active on parts of the site, and leaching. A fairly well preserved mound selected for trench excavations was located initially with the help of phosphate mapping. Similar places have been difficult to locate physically, implying that they may have been destroyed. Another question is the extent to which site function determined the disposal of refuse, the duration of occupation of the site and the number of people on the site at any particular time, given the large volume of trade items found.

A combination of resistivity and magnetometry or magnetic susceptibility surveys could have provided additional results. The information these techniques produce is complementary so that the fullest non-invasive information about a site can be attained (cf. Clark 1990). Magnetometry works well for iron working sites and could have been the most appropriate method for investigating the western portions of the site. Excavations in these areas revealed evidence of iron smelting furnaces and the lumps of slag. Magnetic susceptibility, which reflects the degrees of intensity of human activity on a site could be employed in future to detect past settlement of Baranda even in ploughed up areas.
Controlled surface collections

Controlled surface collections were carried out to assess the density of the material on the site, and define activity areas. Trend surface analyses of this kind also help in interpreting site function.

Over 90 five-metre square working units were surface collected. This amounted to slightly less than 1.25% of the originally intended 5% random sample as reliable surface collection was only possible in cultivated areas where artifacts were easily visible. The working units are shown on Map 19. The interpolated maps of different artifact categories are presented in Chapter 7 (Maps 28–36).

Excavations

Test pits

A total of 56 one-metre square test pits were dug at 25-metre intervals along intersecting north-south, east-west base lines (Map 18). This was designed to investigate the stratigraphy of the settlement and as a check to the integrity of the surface collections and the limits of the site. A fairly spread random sample is likely to have given more accurate estimate of the total site occupation area, and provides a better basis for estimating the degree of representativity of the finds (see for example Sinclair 1987, p. 32, pp. 73–7).

An alternative strategy would have been the use of micro coring with a mechanical core, as has been used successfully on complex sites such as Great Zimbabwe for a refined assessment of the stratigraphy. The technique extracts cores only 5 cm in diameter and this causes minimal disturbances to deposits. It is also relatively rapid and it can provide more comprehensive coverage. However, several factors militated against the use of the corer when investigating the Baranda site. Firstly the depth of the deposit was shallow, rarely exceeding 50 cm in some

Map 19. Map of Baranda showing 5 x 5 m units where controlled surface collections were made.
test pits. Secondly the soil texture was too sandy in most parts of the site to hold firmly to the corer. Thirdly, the vicinity of the site to the gold mining area of the Mukaradzi valley makes any form of drilling a sensitive procedure for which government clearance would be required involving cumbersome bureaucracy.

All pits were excavated to penetrate the sterile, apparently natural soil. All material was sieved to recover artifacts such as potsherds, daga and beads. In practice the majority of the test pits yielded similar material with the exception of the western part of the site which yielded significant quantities of iron slag. The stratigraphy of the site from the test pits can be summarised as follows:

1. A grey sandy horizon, 20–45 cm deep. In ploughed fields, it is loose in texture but hardens in woodland areas. In poorly drained areas this layer is replaced by a dark strongly leached horizon with no visible stratification.

2. A yellowish sandy horizon underlying the grey sandy horizon in well drained areas, mostly 45 cm below the surface. The development of this horizon is sometimes limited by slope and rock outcrop.

In Farm 4 there was some surface variation in soil colour, with the reddish clayey soils being dominant.

Trench excavations

A trench 28 square metres in area was excavated to investigate the internal dynamics of a mound located to the west of Farm 7 (Map 18). This included the structure and plan, including architectural detail, of a house. It was also essential to recover a securely stratified sample of fallow or artifacts that could be dated both historically and scientifically. The low mound where Trench I/1 was laid had been disturbed by a road cutting on the side and this has been made worse by soil erosion creating small gullies in the road.

The extension of the trench showed an existing house structure which had collapsed outwards (Fig. 6). The daga matrix was not removed to see the kind of surface they were resting on, but the sterile material revealed on the eastern part showed that it could have been a beaten earth floor. Figure 7 shows the north and south facing sections of the trench. The stratigraphy is described as follows:

1. Dark greyish brown humus topsoil
2. A grey sandy soil horizon, shallow (5–10 cm) in the western end of the trench but gradually becoming deeper (20–25 cm) towards the eastern end. The soil is lighter in colour in the western part where it is mixed with a harder more compact material, probably clay plaster. The layer produced numerous sherds of local pottery (including a crucible) and glass beads, some imported wares and lumps of iron slag (see Fig 6, Plan I).

3. Large, reddish brown, pole impressed daga lumps dominating the western half of the trench and mixed with a compact light grey clay plaster 20 cm from the surface (Fig 6, Plan II). Numerous local pottery sherds, glass beads, some imported wares and large bone fragments were found within the daga matrix.

4. A light yellowish orange horizon immediately below the grey sandy soil, 25–30 cm from the surface. This is the undisturbed natural soil of the site; defined on the eastern half of the trench there was no daga material (Fig 6, Plan III).

Three radiocarbon dates were obtained from Trench I. These are 660 +/- 70 BP (Ua-2347), 570 +/- 80 BP (Ua-2348) and 530 +/- 80 (Ua-2349), and their calibrated values are given in Table 4. The local pottery from the same trench was dated by optical luminescence to 1590 +/- 30 AD (R-913601) and 1620 +/- 30 AD (R-913602) (see Table 5).

** Finds**

There is little differentiation between surface material and that recovered from excavations. Local and imported pottery, glassware, glass and copper beads were also recovered. The pottery is examined in detail in Chapter 7. A sizeable faunal assemblage was found in Trench I/1a, and is also analysed in Chapter 7.

The excavations also yielded a limited number of metal objects. No gold ornaments were recovered, but a single crucible with some gold particles in the inside was picked up from the surface close to Pit LI. Two copper or bronze medallions were found on the surface. One was plain and oval shaped (Plate 18), and the other was circular, and gilded (Plate 19). It bears a head of a bearded man but carries no inscription. Similar objects with inscriptions have been recovered by Garlake (1969a, p. 45) at Dambarare and these have been identified as religious objects, with a history dating back to 13th-early 14th century Portugal. The Baranda medallions are still to be identified.

Plain, twisted and bundled wire, mostly copper but also iron, was recovered from Trench I/1a. Some of the copper wire was wound on a wooden core to make bracelets or bangles. Lumps of iron slag were found all over the site but the largest concentration of this material is to the west and extreme south-west. The context of this material is not yet fully defined, and more excavations are required.

Also found were grinding equipment, pebbles, 10 spindle whorls (circular ground down sherds with a central perforation drilled from both sides), ‘ground’ sherds (circular, semi circular, oval or oviform ground down sherds without a central perforation), and three crucibles. The material is discussed in Chapter 7.
Fig. 6. Plan of Trench I/1a: (I) after removal of layer 1, (II) after removal of layer 2, and (III) after removal of layer 3.

BARANDA Trench I/1a

- Daga matrix (pole impressed daga, clay etc.)
- Grey surface
- Yellowish orange surface
- Ash and charcoal
- Iron objects
- Bone and bone fragments
- Pebbles
- Potsherds
- Grinding stone
- Depression or pit (with dark grey soil or charcoal)
Fig. 7. Stratigraphy of Trench IIA, sections facing south and north respectively.

Table 4.

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>TRENCH CONTEXT</th>
<th>LAB. NO.</th>
<th>DATE BP STD. DEV.</th>
<th>DATE AD</th>
<th>DATE AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baranda</td>
<td>I layer 1</td>
<td>Ua-2347</td>
<td>660 +/- 70</td>
<td>1290</td>
<td>1284</td>
</tr>
<tr>
<td>Baranda</td>
<td>I layer 1</td>
<td>Ua-2348</td>
<td>570 +/- 80</td>
<td>1380</td>
<td>1394</td>
</tr>
<tr>
<td>Baranda</td>
<td>I layer 2</td>
<td>Ua-2349</td>
<td>530 +/- 80</td>
<td>1420</td>
<td>1412</td>
</tr>
<tr>
<td>Muchekayawa Hill</td>
<td>I midden, ash</td>
<td>ST 13235</td>
<td>142 +/- 79</td>
<td>1808</td>
<td>1684, 1731, 1808</td>
</tr>
<tr>
<td>Muchekayawa Hill</td>
<td>I midden, ash</td>
<td>ST 13238</td>
<td>220 +/- 80</td>
<td>1730</td>
<td>1659</td>
</tr>
<tr>
<td>Muchekayawa Hill</td>
<td>I midden, bottom</td>
<td>ST 13240</td>
<td>157 +/- 80</td>
<td>1793</td>
<td>1679, 1738, 1805</td>
</tr>
<tr>
<td>Chenguruve Hill (E)</td>
<td>I midden, ash</td>
<td>ST 13242</td>
<td>133 +/- 60</td>
<td>1817</td>
<td>1688, 1726, 1809</td>
</tr>
<tr>
<td>Chenguruve Hill (E)</td>
<td>I midden, bottom</td>
<td>ST 13239</td>
<td>183 +/- 80</td>
<td>1787</td>
<td>1670, 1748, 1760, 1773</td>
</tr>
<tr>
<td>Chenguruve Hill (E)</td>
<td>I midden, ash</td>
<td>ST 13236</td>
<td>96 +/- 100</td>
<td>1854</td>
<td>1713, 1715, 1887</td>
</tr>
<tr>
<td>Chenguruve Hill (W)</td>
<td>I midden, ash</td>
<td>ST 13241</td>
<td>136 +/- 60</td>
<td>1814</td>
<td>1687, 1728, 1809</td>
</tr>
<tr>
<td>Chenguruve Hill (W)</td>
<td>I midden, ash</td>
<td>ST 13237</td>
<td>62 +/- 118</td>
<td>1888</td>
<td>1955</td>
</tr>
<tr>
<td>Chenguruve Hill (W)</td>
<td>I midden</td>
<td>Ua-2740</td>
<td>190 +/- 70</td>
<td>1760</td>
<td>1668, 1751, 1758, 1773</td>
</tr>
</tbody>
</table>

Notes
Cal date AD from intercepts (Method A) and probability distribution (Method B)
References: University of Washington Quaternary Isotope Laboratory
Table 5.

<table>
<thead>
<tr>
<th>LOCALITY</th>
<th>TRENCH</th>
<th>CONTEXT</th>
<th>MATERIAL</th>
<th>LAB. NO.</th>
<th>OSL AGE (AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baranda</td>
<td>I</td>
<td>daga feature</td>
<td>local pottery</td>
<td>R-913601</td>
<td>1590+/-30AD</td>
</tr>
<tr>
<td>Baranda</td>
<td>I</td>
<td>edge of daga</td>
<td>local pottery</td>
<td>R-913602</td>
<td>1620+/-30AD</td>
</tr>
<tr>
<td>Muschekayawa</td>
<td>I</td>
<td>midden</td>
<td>local pottery, burnt daga</td>
<td>R-913601</td>
<td>1560+/-30AD</td>
</tr>
<tr>
<td>Muschekayawa</td>
<td>I</td>
<td>midden</td>
<td>local pottery, burnt daga</td>
<td>R-913602</td>
<td>1605+/-30AD</td>
</tr>
</tbody>
</table>

EXPECTED AGE

16th or 17th century Homogeneous horizon, 30-40 cm b. a.
16th or 17th century Homogeneous horizon, 40-50 cm b. a.
17th century or later 10 cm from sterile soil
17th century or later Ash in partially burnt context

Interpretation

The occupation level of the site is restricted to the grey sandy horizon with the exception of pits XXIX and XXX where a deeper horizon is found, but with no clear visible stratigraphy. A mixed assemblage has been found in this pit suggesting some parts of the site were originally occupied by people of the Musengezi sub-tradition. Some sherds from pit XVIII, XXX, XLVI and XLVII are of a type interpreted elsewhere as representing a later phase of the Early Farming Community (Garlake 1969b). The main occupation is indicated by the presence of highly polished and graphite burnished pottery.

The settlement history of Baranda

A number of settlement phases can be defined on the basis of ceramic variability and typology. Imports are certainly important in placing the site in the historical period, but this is a part in the history of the evolution of the settlement. The settlement history of Baranda is defined as follows.

Phase 1: Terminal early farming community settlement.
Phase 2: Musengezi later farming community settlement.
Phase 3: Great Zimbabwe tradition occupation of the site.
There is no evidence of transition from phase 1 to 3, and therefore it would be correct to assume they were unrelated culturally. Phase 3 marks a significant change in the ceramics, settlement pattern and economy. Highly polished, graphite burnished wares replace the Musengezi assemblages, showing a higher degree of specialisation. Contacts with the coast are enhanced and imports such as beads increase in volume. A centre of some economic importance emerges, and the settlement grows in size, spreading over the original Musengezi settlement. Exploitation of gold resources probably starts around this period. Barunda phase 3 represents the establishment and subsequent development of the Great Zimbabwe tradition in northern Zimbabwe. This is clearly demonstrated in the pottery (see Chapter 7). Increase in the volume of imports from the late 16th century, throughout the 17th to the early 18th. This probably indicates Afro-Portuguese contact and trade.

5.4.2 Muchekayawa Hill

Site location – 16° 50' 03"S; 31° 49' 40"E

The site of Muchekayawa is a loopholed stone structure situated on the south-western ridge of Muchekayawa Hill, a dolerite formation which geologically is part of migmatitic gneiss plain typical for the craton of the area. The site is about 34.3 km south-east of the town of Mt. Darwin along the earth road to Beryl Rose Mine and the Mufurudzi safari area. It is one of a group of four loopholed stone structures located in adjacent farms to east, south-west and west (see Map 12). It is not clear whether these sites were used sequentially or complementarily by the same group of people, but by their location, architecture and other remains suggest they were built in response to conflict.

The site was reported in 1988 and subsequently planned. It is fairly well preserved despite being used as a base by the Rhodesian soldiers during the Independence war. In addition sometime in 1991 the owner of the farm on which the site is located erected a fence, part of which sliced through the western section of the standing walls. Damage to the walls was considerable.

Architectural details and internal layout

Muchekayawa has a roughly oval plan (Fig 8; Plate 7) distorted by the incorporation of boulders and the amount of flat surface available on the hilltop. The stone structure is built with no apparent coursing using undressed roughly shaped blocks of very uneven sizes (Plate 20). Dolerite, iron formation, granite and even quartz have

Plate 20. Muchekayawa Hill, wall to south-west.
been surface collected and sometimes quarried on or adjacent to the site and used as building raw materials.

The south-western wall is curved, and about 15 m long. One loophole 24 cm wide by 17 cm high has survived but the walling around it has fallen considerably. The northern end is appended by a rough wall about 1.5 m long trending north-south. The maximum height is just over 2 m, being the highest on the site. Average wall width is 1 m. A breach of about 1.5 m has been made on the middle of the wall to make room for the modern fence boundary trending east-west, considerably damaging a section of the walling. A gap 14 m wide separates this wall from the south facing wall. Reasons for this gap are unclear, possibly the rocks were vandalised and taken away from the site. There are some daga fragments situated roughly in between the two walls.

The wall screening south and south-east is built in at least two sequences. First is a wall abutting a boulder to the east. This wall has a gap of about 0.5 m wide, with a slab almost rectangular in shape which may have been used to close or block it. Two loopholes were identified, one was collapsed and could not be measured, and the other measuring 23 x 23 cm. Abutted onto this wall at the western end is another wall 6 m long. Immediately
outside the latter wall is a small ashy midden about 2 m across. The wall here measures slightly over 1 m high and is 0.9–1 m thick. Outside the south and south-eastern walls a fairly steep slope dips for a distance of 40 m after which the slope becomes more gentle.

The wall to the north-east side originates from a boulder at its southern end which it abuts. It is largely intact with the middle section having fallen slightly. The wall curves to the west over the top of a boulder where it ends. Here it is only 75 cm high. A loophole measuring 20 cm by 15 cm is located on this part of the wall. The boulder on which the wall was constructed falls steeply to the west, north-east and east. Immediately on the foot of the boulder and about 1.5 m downwards is a short piece of walling abutting the former. This wall is linked to another wall screening north.

To the north side is another wall about 22 m long and trending east-west. It retains its original height with only a few sections fallen. The highest sections are just under 2 m. One loophole 13 cm by 15 cm in size is situated in the middle. The western end is fallen. Separating this wall from the south-western wall is a gap 16.2 m wide. Immediately outside this gap is an extensive ashy midden roughly trending north-south and measuring 13 m long by 5.5 m wide.

The enclosure measures 52 m east-west by 16 to 32 m north-south and covers an approximate area of 1000 m². However the internal surface is uneven with rock in many places. There is little evidence of human activity inside. Patches of pole impressed daga have been found to the east, and close to the gaps mentioned above. A hearth has also been identified. A daga floor or plaster has been identified close to the wall screening the south-west side. The most informative investigations were therefore carried out on the midden, immediately outside the enclosure to the north-west.

Aims and strategy of the excavation

The aims of the excavation were threefold: firstly to investigate the content of the midden and document the range of human activities on the site, secondly to retrieve indestructible material such as pottery, both local and imported in order to define the cultural identity of the site, and by extension, similar sites in the research area, and thirdly to find datable artifacts such as imported pottery, glassware, glass beads, charcoal and burnt stone, clay or daga to define the chronology of the site.

A trench, 6 m long by 2 m wide and trending NW-SE was laid across the width of the midden. The ashy mate-
Stratigraphy

The midden is defined by grey ashy material which was deposited on a dark reddish brown soil. The latter is the dominant or basic soil type of the hill and the surrounding areas.

A summary of the stratigraphy of the midden is presented follows (Figs. 9 and 10)

Fig. 9. The stratigraphy of Muchekayowa Hill (midden), sections facing north-east and south-west respectively.

Fig. 10. The stratigraphy of Muchekayowa Hill (midden), sections facing north-west and south-east respectively.
1 A greyish brown sandy soil with a strong ash content. This material is thin on the top part of midden but thickens gradually towards the periphery.
2 A predominantly fine textured light grey to whitish ash material with charcoal fragments and intruded by numerous roots (Fig. 11).
3 A deep reddish brown gravelly to rocky surface (Fig. 12).

Midden formation

The brown tone in the soil characterising the top layer of the midden is due to humus colouration. This was partially compact on the surface resulting from exposure to heat or rain. The material had slipped gradually down the sides of the midden most probably during wet conditions. The ash material forms the core of the midden, and exceeds a depth of 50 cm in the middle of the trench. The midden was formed on a reddish brown surface, the basic material characterising the geology and soil of the hill and the surrounding farming area (Fig 12; Plate 22).

Finds and dating

There is no differentiation of finds between strata, and the midden was probably used not more than once. A considerable amount of pottery (including crucibles), glass and copper beads were found. A piece of green glass was recovered within the greyish-brown sandy soil layer. In addition, numerous bone fragments and fragments of tortoise shell were found. The frequency of recovery of beads and pottery was even throughout the trench.

There was a low frequency of metal objects. Twenty-one lumps of iron slag weighing 276 g were recovered. Also found were 2 fishing hooks (probably made from copper), twisted plain copper wire, curved plain wire and twisted wire (Chapter 7, Fig. 66).

No features were encountered, but a complete well-fired grey vessel with a coating of soot and some red slip around the rim (mouth diameter 18.5 cm, maximum diameter 26.5 cm, height 20 cm), was found sunk in the top part of the midden, the rim partially exposed. It has not
been established why the vessel was abandoned in that position (Fig. 11; Plate 23).

Three charcoal samples were collected for radiocarbon dating in addition to two dozen potsherds and partially burnt daga lumps for OSL dating. The first two charcoal samples were collected from the middle of the trench within the light grey ashy texture, and about 10 cm from the sterile reddish brown soil. These gave dates of 142 +/- 79 BP (ST 13235) and 220 +/- 80 BP (ST 13238). The third sample, 157 +/- 80 BP (ST 13240) came from the bottom of the ash deposit to determine the earliest formation of the midden. The Calibrated results are given in Table 4.

Ceramic sherds for OSL dating were taken from ashy material about 35 cm below the surface of the midden. The numerous root inclusions may possibly have interfered with the homogeneity of the ash (Plate 21). The sherds were dated collectively to 1560 +/- 30 AD (R-91601). A sample of soil was collected close by to determine moisture content. Another sample for OSL dating included ceramic sherds and burnt earth taken from the bottom of the ash material. This area was partially burnt, and gave a date of 1605 +/- 30 AD (R-91602).
Fig. 13. Plan of Chenguve Hill (eastern site).
5.4.3 Chenguruve Hill

Chenguruve Hill is situated in the Chesa area, 7 km south-east of Mt Darwin town, and 6 km NNE of the peak of Mt Fura at latitude 16° 49' 49" and longitude 31° 39' 37"E (see also Map 12). On it are 2 stone enclosures (described below; Figs 13 and 14) which appear to belong to the class of "looped forts" common in this area of the country (Axelson 1956; Pikirayi 1991). The site was visited in the late 1950s by Donald Abraham who speculated that it was the Portuguese trading site of Massapa. Sherds of Chinese blue and white porcelain have been recovered from the surface of middens associated with the stone structures but they are exiguous in comparison with the large quantities of imported material at Baranda site, 1 km to the north-east.

The archaeological evidence from Chenguruve Hill is presented here as an attempt to give looped stone structures their cultural context as part of the investigation of the archaeological identity of the Mutapa state.

The two stone structures are located on top of a narrow rocky ridge 980 m above sea level, and trending north-east to south-west. The north side is low and from here the ground rises gently northwards to 1000 m above sea level. The south side drops steeply for some 60 m to a stream valley which has its source in Farm 3. The hill is one of the few granite formations in a predominantly schist and gneiss landscape. It commands a wide view of the Mukaradzi valley to the south and south-east. The drainage has been discussed in relation to Baranda. The area is dominated by open Brachystegia woodland.

A detailed description of the architecture of the enclosures on the hill will appear in a separate site report. Granite was exclusively employed in the construction of the stone structures. Basically there is a combination of long free standing walls built to prevent easy access to the enclosure (screening walls) and walls with a blocking effect are usually short in length, often linking and filling in gaps in between boulders. In this case boulders serve as a natural continuation of the stone walling. When boulders are not large or high enough to provide effective screening, a running wall is sometimes constructed on top to provide additional screening height. The distance between the two enclosures is 119 m, and they are separated by a largely exfoliated batholith. This was probably used as the quarry.

The eastern site (Fig. 13)

This is an incomplete enclosure with a curved piece of walling screening the south and south-west areas of a group of boulders on the eastern end of the ridge. These largely exfoliated boulders arranged in an oval formation rise to about 4 m above the general ground level. The boulders define the edge of the rock surface which is fully exposed to the west and separates this particular site from the western site. The southern end of this group of boulders is extremely rocky and uneven and after 35 m from the site drops steeply to a stream. The site is easily approachable from the western side where these boulders are less precipitous.

Two short stone walls enclose 5 mounds of pole impressed daga representing remains of circular houses (see for example Plate 24). All the structures except one were raised on top of boulders which probably served as foundation. The smallest daga concentration (M2) measured 1.2 m across, and the largest (M5) 3 m. The rest of the interior of the enclosure is uneven and rocky.

Immediately outside an entrance on the western side is an ashy midden, 8–10 m in diameter (Plate 25). A piece of blue and white porcelain was recovered from the western slopes of this midden in 1989. To the east beyond the boulders are locations defined by inverted complete pots and/or stones (not indicated on the plan). These are possibly burial sites. They were probably contemporary with the site for their pottery is very similar to that recovered from the enclosure. Another probable burial site is located about 50 m north-east of the enclosure.

The western site (Fig. 14)

This is an elongated stone structure trending east-west. It is 140 m long and has varying widths, the maximum being about 30 m. The interior is divided into 3 sub-enclosures arranged in successive tiers.

The eastern sub-enclosure is built within a maze of exfoliated boulders some reaching 5 m in height. The enclosure is elongated and trends east-west. The maximum distance across is 30 m. No walls are found to the south, the boulders in this area serving as a continuation of the walling. The rest of the enclosure is built of short pieces of walling which are in effect blocking walls. Wall height varies from 1 m to the east to 1.4 m on the north side. The average thickness is 80 cm but one wall to the north-east side measured about 1 m across. There is no courising. Irregular stone blocks are piled up. Two loopholes, measuring 20 by 25 and 20 by 15 cm respectively cut through a short length of wall blocking approaches from the north-east. There is no sign of an entrance anywhere. The most probable position would have been the north side, but the walls here are fallen. Because of the boulders, the only open space is to the north-west and from here an alley links this enclosure to the next one slightly higher above to the west. A total of three midden deposits, three daga mounds and grinding equipment were mapped inside the enclosure.

The middle sub-enclosure is 1.5–2 m higher than the eastern one. It is defined by two screening walls to the north and south both trending generally east-west, and by boulders to the east and west respectively. Most of the
Plate 24. House mound, Chenguruve Hill (eastern site).

Plate 25. Chenguruve Hill (eastern site), midden (see also Plate 27).
walls have fallen and the standing ones are in a poor condition of preservation. The space enclosed by these walls and the boulders measures 30 m east-west and 28 m north-south. About four daga concentrations are located inside the enclosure. The southern wall is slightly curved outwards and links boulders of the eastern and western enclosures. It partly runs on top of small boulders in between to provide extra screening height. The wall height measures 1.20–1.30 m towards the east, but reaches 1.70–1.80 m at some sections to west. The width varies from 60–80 cm. A loophole is located on the eastern end of the wall and measures 18 by 19 cm. This loophole is now almost at ground level as the inside is largely filled by material eroding from the higher parts of the enclosure. The northern wall links boulders to the east and west. It runs mostly on top of bare rock surfaces, is largely fallen and in a poor state of preservation. It is partly filled on the inside by material eroding from the enclosure. The width measures 60–70 cm. The height measured from the outside of wall abutting a boulder to the west is 1.90–1.95 m.

The concentrations of pole impressed daga forming mounds measure 2–3 m across. A number of grinding stones were associated with the house mounds. Three grinding stones were mapped. The first grinding stone is located towards the north-west edge of the bare rock surface about 5 m from mound 3. This measured 47 by 33
cm and was broken. The second is located on the same bare rock surface to the north-east and was also broken. It measured 24 by 29 cm. The third was found to the south-east of mound 3 and measured 39 by 20 cm across, and was broken.

Outside the enclosure are two extensive ashy middens, on the slope facing north and the other to the south. The midden to the north was the site of our excavations. For full details including plan, see below.

The western sub-enclosure is on the highest part of the hill. It is elongated to oval in plan and defined by boulders to east and north. To the north and north-west, short pieces of walling fill in gaps between boulders, effectively blocking them; to the west the wall is free standing, and built on bare rock surface, while to the south it runs mostly on top of boulders to provide extra screening height. The enclosure measures 22–30 m north-south and 40–5 m east-west. Several house mounds have been identified in this enclosure and due to the uneven surface inside, they have been raised from a series of platforms or terraces.

Rock slabs between boulders to the east were probably used to fill in the lower cliff face of a rock shelter. The stones may serve as markers of burial places. At least two locations have been defined. However no pottery has been found in association with these rock slabs (not defined in plan).

To the north-west is a short, largely fallen wall blocking a gap 2 m wide. Immediately inside is a mound of daga plaster, 2 m across. An alley to the south provides a direct link between this enclosure and the one immediately below.

A wall blocking boulders and facing north and north-east is mostly rubble, filled in the inside by material eroded from other parts of the enclosure. The wall roughly trends south-east to north-west and turns sharply on top of a boulder after which it follows a north-east to south-west direction. It encloses a gap between two boulders.

Outside the wall trending south-east to north-west is an extensive ashy midden occupying the entire slope of the hill and reaching flat ground 20–25 m away. Two boul-
ders to the north-west, 1.8 m apart are blocked by a fallen wall. Material from the enclosure has filled the inside.

To the west and south-west is a free standing wall running on top of granite bare rock surfaces. The internal face is intact but the outside is fallen. Wall height measured from the inside ranges between 50 and 60 cm. Thickness slightly exceeds 60 cm. One loophole measuring 18 by 23 cm and located in this section of the wall has now collapsed.

To the south is a low, largely fallen and often discontinuous wall. The inside is filled with material eroding from the enclosure and the boulders outside are steep. Some walls run on top of the boulders. The boulders to the south-south east and south east are blocked by a large fallen wall which is filled from the inside. The wall defines a narrow alley between the boulders to the south and other boulders to the north, providing an alternative albeit intricate approach to the enclosure immediately below the east.

The description of the internal layout of this sub enclosure given here is based on observed surface features which were planned. The interior can be divided into a platform occupying the central and highest parts of the enclosure. Here are two mounds of pole impressed daga, both measuring more than 2 m across. Large moulded and burnt lumps of plaster serving probably as kerbs form a mound. Another concentration of pole impressed daga lumps and pieces of pottery was located to the south-west defined by a curved line of stones. A grinding stone was identified on the platform close to the wall facing west.

To the north-west of the enclosure a short wall divides this platform from an area immediately lower below. This is probably a lower platform. Nothing was recorded here except a few stone blocks, some fallen from the dividing wall. To the south is another lower platform. Close to the walls facing south-west are some lumps of pole impressed daga which are not associated with any mound. Probably these lumps derive from the higher parts of the enclosure. An ashy midden is found close by. Among boulders to
the east of the enclosure are three mounds, one with pole impressed daga lumps. Dimensions range from 1.5 to 2 m across. One mound is associated with a grinding stone measuring 16 by 19 cm.

The excavations
The major aim in excavating the sites on Chenguruve Hill was to establish the relationship of these sites with open field sites such as Baranda which are typologically different in ceramics.

The eastern site

Strategy: A 4 by 1 m trench was laid at right angles to an east-west base line passing through the entrance of the enclosure and the south facing slope of the midden outside to the west (Fig. 15). The midden was covered with grass tufts and tree leaves. It measured 30 square metres and was protected from erosion by boulders on most sides. On top of the midden plain sherds, bone fragments and a burnishing pebble were found.
Fig. 16. Stratigraphy of Chenguruve Hill (eastern site) (midden) sections facing east and west respectively.

Stratigraphy: The stratigraphy of the midden is described as follows (Fig 16):
1. A dark grey ashy soil layer with burnt daga and charcoal fragments mostly occupying the southern slope of the midden.
2. A soft light brownish grey soil; also with some daga fragments and charcoal.
3. A fine textured, dusty, light grey ash material. This layer is more than 1 m deep in the middle part of the trench.

Finds and dating: The midden yielded numerous local potsherds, copper and glass beads, numerous bone fragments and fresh water mussel shells and river pebbles. Six metal objects were found including a bent iron pin, a twisted wire with a red bead affixed to one end, a broken shaft of an arrowhead, a copper needle and twisted wire (see Chapter 7, Fig. 66). Fifty-eight lumps of iron slag weighing 198.7 g were also found. A piece of blue and white porcelain was recovered within the first 2–3 cm of the soft light grey ash material. A few lumps of
The western site

Strategy: A 5 by 1 m trench trending north-south was sunk on a midden outside and adjacent to the middle enclosure (Fig. 18). The midden slopes down steeply to the north ending on flat ground below the hill. It has eroded downwards so that the layers have largely accumulated down the slope. The midden was overgrown with grass and littered with dry greyish-brown leaves. The top soil was grey coloured and fine to sandy in texture.

The stratigraphy (Figs. 19 and 20): 1 A light grey ash soil with sandy particles derived from weathering granite. 2 A soft fine textured grey ash material. 3 Numerous charcoal pieces have accumulated at the bottom in the north end of the midden below the fine ash on sterile greyish brown sandy soil.

Fig. 18. Plan of Chengurwe Hill (western site) midden, after excavation.

burnt pole impressed daga were found in the light grey ash material. The impressions measured 1–2 cm in diameter. Small stones were also recovered within the ash but these were not burnt and therefore unsuitable for dating. Three charcoal samples were collected for radiocarbon dating. The first two samples were collected from the middle part of the trench within the light grey ash material and dated the layer to 133 +/- 60 BP (ST 13242) and 183 +/- 80 BP (ST 13239). The third sample dated the bottom part of the midden to 96 +/- 100 BP (ST 13236). The Calibrated results are given in Table 4.

Interpretation: The original location of the midden was an uneven rocky surface (Fig 17). This was covered by the accumulation of refuse from the enclosure. The colour differences reflect the nature of the material thrown on the midden, and do not have any cultural significance. Daga fragments were also thrown into the midden, probably during or after a building phase. The dark colouration of the ash to the south slope of the midden is due to the burning grass, decomposing leaves and charcoal pieces which have accumulated there through a process of sorting.
Finds and dating: Finds occurred throughout the deposit, and included local pottery and some crucibles, glass, copper and shell beads, fresh water mussel shells, burnishing pebbles, pendants and charcoal. Twenty-six metal objects were found (see Chapter 7, Fig. 67) which included a barbed iron arrowhead, an iron rod, several lengths of plain copper and iron wire, a needle, 2 iron hooks, irregular sheet metal and decorated metal object probably made of copper (see Chapter 7, Fig. 67 i). The iron slag found weighed only 27.9 g. A piece of white porcelain was recovered in the first layer towards the topmost part of the midden. Another piece of white porcelain with internal and external floral and linear blue decorations was recovered from the same layer in the middle of the trench. A third piece of glazed porcelain decorated with
concentric blue lines and ?birds and with a ledge rim at the base was found roughly at the interface of the light grey ash material and the dark greyish black layer with numerous charcoal fragments. Small daga fragments and lumps, one exceeding 5 cm across were found in the light grey ash material. No spindle whorls were recovered from all the excavated loopholed stone structures, but sherds with ground edges.

Three charcoal samples were collected for radiocarbon dating. The light soft fine textured grey ashy material largely accumulated in the southern half of the trench was dated to 136 +/- 60 BP (ST 13241). Another charcoal sample close to a piece of blue and white porcelain found roughly at the interface of the light grey ash material and the dark greyish black layer was dated to 62 +/- 138 BP (ST 13237). The third sample taken from a deeper horizon of light grey ash material down slope produced a date of 190 +/- 70 BP (UA-2740). The calibrated results are given in Table 4.

Interpretation: The ash thrown on the upper part of the boulder gradually accumulated below. The sandy particles on the surface and top layer derive from the weathering granite surfaces on the upper side of the midden. The charcoal accumulation at the bottom is a result of sorting, the much heavier charcoal being forced to move down by the force of gravity. The stratification of the midden does not seem therefore to be of any chronological significance.

5.5 Overview

The case studies of Baranda, Muchekayawa and Chengu ruve Hill have produced data that is associated with some of developments during the historical period. In order to understand the context of some of archeological sites in the research area, it is necessary to consult written sources for relevant background information.
6. EXTRACTING THE DATA: CARTOGRAPHY AND WRITTEN SOURCES

6.1 Introduction

In this chapter I will integrate the site data given in the previous chapter with the documentary evidence. Written sources are examined to see how the Portuguese saw or perceived some settlements in the Mutapa state. The sources referring to both Mozambique and Zimbabwe have been used mainly by historians to reconstruct African and Portuguese history in the region especially from the 16th century (Axelson 1940, 1964; Beach 1980, 1987; Bhila 1982; Mudenge 1988). The greatest number of written sources referring to the Zimbabwe plateau were compiled in the 16th and 17th century. While documentation increased during the 18th and 19th centuries, few referred to the Zimbabwean interior. Most of the documents covered areas on the periphery of the Mutapa state such as Manyika, Barwe, the Zambezi Valley, Sofala and other coastal locations.

6.2 Purpose and general content of the written sources

In northern Zimbabwe documents can be used firstly to locate, date and describe the cultural context of some of the archaeological sites in the area thought to have been the seat of the Mutapa state, and secondly to locate specific sites connected with Afro-Portuguese commerce as a key to understanding the archaeology of the Mutapa state. Written sources may provide limited details of site size, function, architecture and spatial settlement organisation. This approach is different from the pre-excavation research used in Britain, Western Europe and Scandinavia (cf. Barker 1982, 1987) where documents are essentially a field technique aimed at providing some valuable locational and functional data before a full excavation is conducted (cf. Brown 1987).

The written sources mainly cover aspects of Portuguese trade and expansion in Zambezia and are thus inherently biased when used in relation to the interior societies. However, with careful analysis, valuable information on religion, justice and diplomacy, life around the courts, housing, local customs, village life, local economies and industry can be obtained (cf. Beach 1987, pp. 136–9).

Portuguese written sources were consulted selectively to establish the extent to which sites recovered during survey were reflected in documents. Few specific sites can be identified apart from Afro-Portuguese trading stations. The main value of documents is in providing a context of events and conditions for the archaeological evidence against which it can be interpreted.

Sites with imports were recovered in an area which written sources give as a general location of Massapa. Sites with a hilltop location are rarely mentioned in the documents but constitute the most evident archaeological remains in the area. However these sites may relate to conflicts recorded in the written sources, and may have served as fortifications.

6.3 Portuguese cartographic data

Cartographic specimens relating to the Portuguese penetration into the Zimbabwe plateau in the 16th and 17th centuries were consulted for localational data, place names and toponyms. Cartography has been used to a limited extent in southern Africa to answer historical or archaeological questions (Randles 1958; Tracey 1968; Norwich 1983).

The six-volume set of reproductions Portuallae Monumenta Cartographica (PMC) by Cortesao & da Mota (1960) is an essential starting point, although quality of reproduction is poor. Manuscript works and atlases by Portuguese cartographers dating before 1700 are found in many institutions and libraries, and most are covered in PMC. Later work such as Nowell (1982) show the Portuguese territorial claims. The Mapa Cor-de Rose (published in 1887) was based on Portuguese presence in the area since the late 15th century, and has been compiled using earlier cartographic data.

6.3.1 A review of some cartographic works

Volume 1 of PMC covers the earliest known cartographic specimens from the end of the 15th century to the beginning of the 17th. Volume 2 deals with 9 cartographers and the work either assigned by or ascribed to them, as well as an atlas whose author is unknown. The volume is dominated by the works of Diogo Homem whose charts and atlases date to 1557–1576, covering mostly the Med-
iterranean but also Africa, Asia and the Americas. Other cartographers within the same volume include André Homem, Fernando Álvares Seco, Bartolomeu Velho and Lazaro Lois.

Geographical knowledge of the interior is sketchy, for example Diogo Homem’s charts show detail only in relation to the coast (see maps of 1558, 1561 and 1568). The same applies to André Homem’s atlas of c. 1550–1560. Bartolomeu Velho’s atlas gives more detail, although geographically incorrect, for the interior of Southern Africa. The following names appear: MANAMOTAPA IMPÉRIO, MOENHEMUE IMPÉRIO, MOBARA, EMBOE, MOZAMBA, BAROE, MANHICA, BVTVA [Butua], SISONO, TORO. It was probably based on the information given by Antonio Fernandes or other early Portuguese who had been into the Zimbabwean interior.

Volume 3 of PMC covers the second half of the 16th century, to about 1600. Cartographic specimens of Fernão Vaz Durado, Louis Teixeira, Bartolomeu Lasso are covered in this volume, and have charts relating to Zambezia. In one of the charts by Fernão Vas Durado the name MANAMOTAPA appears around a supposed lake located north of the Zambezi, but the Sofala region is correctly located between the Zambezi and the Tropic of Capricorn. A coat of arms fills in the unknown parts of the interior west of Sofala where a river passes from the supposed lake to the Cape.

Louis Teixeira who worked in Portugal in the last quarter of the 16th century and at the beginning of the 17th made a detailed engraved chart of Zambezia dating c. 1600 shows some detail on the Mutapa. This map is probably based on João de Barros’s book of 1552.

Bartolomeu Lasso made a number of charts dated between 1590 and 1596. The interior detail of Eastern Africa on one of the charts based on an atlas dated 1590 is very inaccurate. Five lakes mark the sources of the Zambezi and the Nile and MANAMOTAPA is marked close to the southernmost lakes north of the Tropic of Capricorn. Three rivers leave this lake parallel to each other.

In another chart dating to 1592–1594 the Monomotapa area covers the interior parts of Africa south of ‘Zaire lacus’, the source of flow of the Nile and Zaire and extends beyond the Tropic of Capricorn. Its western extent is marked by a range of mountains running almost parallel to the Atlantic coast stretching from the northern Cape Region to southern Angola. The cartographers still
had no clear picture as to the limits of the western parts of the Mutapa state. A map dated 1596 shows ‘Monomotapa’ in some detail, but some place names are unclear and unidentifiable. The region of Butua lies to the south of ‘Monomotapa’, and Sofala is to the east.

Volume 4 of PMC covers the cartographers of the late 16th century such as Sebastiao Lopes, Pero Magalhães de Gandavo, Pedro de Lemos and Manuel de Mesquita Piresrelo and continues into the 17th century with the work of Manuel Godinho de Eredia, João Baptista Lavanha, João Teixeira Albernaz, and Pedro Teixeira Albernaz, young brother of the former. The most important cartographer of the 17th century is probably João Teixeira Albernaz, who also had a grandson by the same name (identified in the same volume as Teixeira Albernaz II).

Volume 5 deals with Portuguese cartography during the second half of the 17th century, but also included are works earlier than 1650 which for one reason or the other could not be included in the preceding four volumes. Included in this volume are the 166 maps by João Teixeira Albernaz II, one of them showing Zambezia.

From the last quarter of the 17th century, the text of *The Books and Atlases of the ‘State of Oriental India’ (Os Atlas Do Estado da India Oriental) describing Portuguese posts and forts in the western zone of the Indian Ocean, India and the Far East, was supplemented by nautical charts, topographic maps and plans. Some of these works are mentioned in connection with Antonio Bocarro (dated 1635) and Pedro Barreto de Rezende (dated 1635–1636) and João Teixeira Albernaz II (dated c. 1660).

Volume 6 is an index to the PMC compiled by Alfredo Pinheiro Marques and published in 1987 by Imprensa Nacional-Casa da Moeda. It has new material relating to Portuguese cartography, updating earlier editions. The index has a total of six charts identified after the publication of the PMC. The second edition of PMC was by 1987 at an advanced stage. No new maps pertaining to the Rivers of Cuama have been located.

Seven cartographic specimens relating to the Mutapa state have been selected from PMC. All the charts have been taken from volumes 4 and 5.

Cartographic specimen 1 (Map 20): Map by Manuel Godinho de Eredia 1615–c. 1622 (in PMC (vol. 4), Plate 419P)

This map shows Zambezia as far as Chikova. The ‘REYNO DE MONOMOTAPA’ is defined by the Zam-
bezi (Cuama Rio) and Rio Arœnha (Ruyenya). The Rio Aria (Ruya) flows through the Monomotapa territory. To the east of Mt Fura is Macapa (Massapa). In between the two rivers joining to form the Ruyenya is Luanze, marked as a feira of gold (feira do oro). The city of Monomotapa (Zimbabwe Reino) is placed north of the Ruya and south of the Escarpment. Two forts, St. Esteva and St. Miguel are located along the Zambezi west of Tete. These were built between 1612 and 1614.

Cartographic specimen 2 (Map 21): Map by João Teixeira, 1628 (in PMC (vol.4), Plate 461D)

This chart is unique in that it demonstrates the knowledge of Portuguese cartography in relation to the interior by the beginning of the 17th century. The Mutapa’s zimbabwe is still shown north of the Ruya and south of the escarpment.

Cartographic specimen 3 (Map 22): Map by João Teixeira I, 1630 (in PMC (vol.4), Plate 469 (26th chart))

This is a detailed chart reflecting some of the historical developments in Zambezia since c. 1600. The influence of the Portuguese in the Zambezi valley seems to have increased considerably: chuambos and mines of iron and silver are marked. To the south of the Zambezi trading centres and the court of the Mutapa’s ‘Zimbabwe’ are marked. Topographic detail is limited.

Cartographic specimen 4 (Map 23): Map by João Teixeira I, 1630 (in PMC (vol.4), Plate 469 (27th chart))

On this map Dambarare is surrounded by ‘minas de oro’ near the source of a big river, probably the Mazowe. Orupande (Urupande) is also located in a mining region, but the geographical precision is extremely poor.

Cartographic specimen 5 (Map 24): Map by an anonymous author, 1640 (in PMC (vol.5), Plate 579D)

This map also reflects the developments in Zambezia from late 16th to the early 17th centuries. Fortifications (sometimes referred to as chuambos) are marked to the north of the Zambezi, and also within the Zambezi valley in Bororo territory. Trading centres, Luanze, Mazupa, Dambarare and Orupandi are marked south of the Zambezi but geographical precision is lacking.

An outline of this map is found in Pedro Barreto Rezende’s *Livro de Estado da India Oriental* (1636), and is reproduced in PMC (vol.5, Plate 579B). There are no annotations to the symbols on the map. In c. 1663, João Nunes Tinoco produced an atlas of 70 plans, incorporating earlier cartographic charts (in PMC (vol.5, Plate
579C). The details on one of the map are certainly copied from the 1640 map, attributed to an anonymous author.

Cartographic specimen 6 (Map 25): Map of anonymous author, in Pedro-Barreto Rezende, c. 1636 (in PMC (vol. 5), Plate 579A)

This map has detail relating to the historical events reported in Portuguese written sources between the late 16th and the early 17th century. *Chuambos* are plotted to the north of the Zambezi, and so is the Zimba area.

Cartographic specimen 7 (Map 26): Map of João Teixeira Albernaz II, 1665 (in PMC (vol. 5), Plate 557B)

The IMPERIO DO MANAMOTAPA is shown. The geographical detail relating to the western limits of the territory is poor; the Mutapa state was thought of as sharing its western border with Angola. More details appear in the Zambezi as shown by the number of territories marked. The influence of the Mutapa state seems to have been felt close to Sena and the estuary, but the interior detail is confusing. Feira Manzovo is marked. Luanze is marked north of the Rio Mecobo, while Massapa is plotted south of Manyika. Matafuna is located to the west. Butana is located much further west.

There is a similar cartographic specimen by João Teixeira Albernaz II in PMC (vol. 5, Plate 551) dated 1677 which shows the IMPERIO DO MANAMOTAPA. This map is probably based on earlier cartographic specimens, as there is a repetition of the information previously mapped elsewhere. The map marks Zimba(?), possibly the court of the Mutapa, close to the headwaters of the Zuya. The map is of extremely poor quality.

In general, cartographic data can only be used to a limited extent. Inland maps tend to mislead rather than aid research. The main reason is that the cartographers were in any case using the same documents available to us without knowledge of the real location of rivers, mountains, etc., and that they had problems with preconceived central lakes (see below), longitude and magnetic north. Moreover their use of different documents to make up a specimen could be confusing.

Even by the mid 17th century little was known concerning the interior, especially the source of the Zambezi. The belief that the river sourced from a large inland lake was still strong. Father Antonio Gomes noted from the local people during his voyage that the rivers that merge into the Zambezi "carry their water down from the
big central lake inland ...' (Beach & Noronha 1980 (vol. 1), p. 55). The great number of editions of Ptolemy in the 16th century had popularised the idea of Central African lakes, and the legend was reflected in most maps of this and the following century (Randles 1958). This thinking shaped Portuguese cartographers of southern Africa for many years.

Randles (1975, p. 118) argues that the idea of 2 large rivers converging in the south east coast of Africa was borrowed from the Arabs who were acquainted with the plateau but Barros cites six tributaries of the Zambozi: the Panhame (Manyame), the Luamguoa (Luangwa), the Arruya (Ruya), the Manjouo (Mazowe), the Inadira (Nyadiri) and the Ruenia (Ruenya) which proves that by the middle of the 16th century the Portuguese had explored the plateau well inside the present borders of Zimbabwe.

By the late 16th century some of the maps were published in places such as Antwerp and Amsterdam in enlarged editions. However a majority of the maps remained unpublished. The reason why governments concerned - Portugal, and later Holland, Spain and Britain - did not publish these maps was that they did not want to reveal information on the explorations made, what had been found, and the intentions for their finds since this would generate interest by other nations. Thus the manuscripts were entrusted to certain captains who were obliged to return them, and then locked into safety (Francis Hebert, Royal Geographical Society, pers. comm.). However despite the severe limitations posed by ancient cartography, some of the available specimens can be put to good use. Despite the geographical inconsistencies, information alluding to the location of some sites dating to the historical period can be deduced.

6.4 Written sources

6.4.1 Early Muslim and Portuguese sources

A number of Muslim sources relating to the Zimbabwean interior are available but they are brief (cf. Randles 1975, pp. 9-10, see also Brullau 1989). The three sailing manuals of Ibn Majid (who retired in 1495, and died in 1501), written during the late 15th century (possibly by 1475-89) with additions by his successors, give some indication of the extent of knowledge regarding the habi-

- the land of the Sofala region in the second half of the 15th century and possibly earlier. This document is vague, repetitive and confusing. Randles is of the opinion that it probably refers to the land of Butua and the territory around Khami and the Save River.

Some of the sources consulted are:

1. Records of South-Eastern Africa (RSEA) (by George M. Theal): 9 demi octavo volumes each of over 500 pages published in London for the government of Cape Colony from 1898 to 1903. They contain a large number of Portuguese records copied by Theal from the originals in various archive departments in Europe, extracts from old Portuguese histories, the whole of the African portion of the *Ethiopia Oriental* of Dos Santos and a number of documents and extracts from books in French, Dutch and English with a copious index of the whole. All the Portuguese documents have English translations, mostly made and revised by Theal, attached to them. Some of the comments provided by Theal in the 9 volumes appear elsewhere and a full list of earlier publications is given in a catalogue (Theal 1912).

2. Documents on the Portuguese in Mozambique and Central Africa (DPMCA), 1497–1840, edited by da Silva Rego & Baxter in 8 volumes between 1962 and 1975. This series was edited under the auspices of the Centro de Estudos Históricos Ultramarinos in Lisbon and the National Archives of the then Rhodesia. The volumes contain information about the interior in the form of notes, official directives (instructions) to captains or *capitães-mores* at various fortresses in the Estado da India, catalogues of merchandise despatched to various warehouses in the fortresses for trade with the local people, letters to the Portuguese monarch, personal correspondence, especially by missionaries, correspondence with Goa, some documentaries and account of voyages and narratives of battles fought by the Portuguese, for example in the Zambezia region. These documents also have English translations attached to them.

3. In 1980 Beach and Noronha compiled letters, documentaries, etc which originally did not appear in either RSEA or DPMCA. The material is found in two volumes (Beach & Noronha 1980). These documents had
never been translated into English and published previously, and they relate to the Shona speaking peoples. The first volume has 37 documents dating 1575–1699. The writers included in this volume deal with the Mutapa state. The second volume has 36 documents dated 1700–1890, and covers areas peripheral to the Mutapa state which include Sofala, Teve, Manyika and Zumbo (Beach & Noronha 1980).

6.4.2 The historical background

When the Portuguese arrived on the East African coast at the beginning of the 15th century they sought to control markets of the Swahili who had long established contacts with interior population groups. In the case of the northern Zimbabwean plateau they were trading cloth and other objects in exchange for gold. The history of this commercial interaction is unclear but one of the biggest Swahili urban centres along the coast, Kilwa, was trading with the Zimbabwe plateau in the 13th and 14th centuries and its influence gradually declined following the loss of the gold trade with the Zimbabwe plateau (cf. Huffman 1972a; Garlake 1973a; Chittik 1974).

Between 1498 and 1505 the Portuguese gathered information about gold mines in the interior mostly from the Swahili traders. Pedro da Corvilha who visited Sofala in 1490 was the first Portuguese to learn about the gold mines. A Viceroy was later established at Goa, India charged with the responsibility of registering all merchandise sent from Portugal, and redistributing it to various factories manned by captains and secretaries. These in turn conducted the trade with the local people. For this to take place effectively they had to collect information relating to the location of gold mines, gold production, the rates of exchange, the African rulers and the structures of their political systems. The source of this vital information was the local people but some Portuguese were sent into the interior to gather such knowledge, for example Antonio Fernandes in 1505.

The Portuguese decided to occupy all strategic points along the Indian Ocean coast. This decision must be seen in the wider context of the development in Europe of mercantilist capitalism. Western Europe needed a wide variety of goods that it could neither produce itself nor acquire by direct simple mechanism of exchange. The Indian Ocean trading network on which the Portuguese
imposed themselves already involved the circulation of a great quantity of merchandise (Boxer 1969; Wallerstein 1974).

Since the Swahili were already in control of the coastal trade of East Africa it was logical for the Portuguese to use them as middlemen. The Portuguese were not satisfied with this arrangement, and at later stages tried to supplant the Swahili.

In 1505-1506 the Portuguese built forts at Sofala and Kilwa (Gereza), and Mozambique Island in 1507 to control the gold trade. To control the shipping lanes of the Western Indian Ocean zone more forts were built: Quilon in India became the main port of loading next to Cochin, Angediva became the general headquarters and another fort was built along the Red Sea (at Socotra, an island near the Horn) to block Arab shipping and eliminate the sultan of Cairo from the commerce of the Indian Ocean (Beach 1980; Biilha 1982; Smith 1983). In 1509 the Portuguese attacked various Swahili towns and occupied some. By 1512 they had succeeded in dominating the Swahili. In 1510 they occupied Goa in India and in 1511 acquired the Straits of Malacca (Axelson 1940).

Sofala was thought to be strategically placed to tap all the gold from the interior and which was to be shipped to Goa, the capital of all Portuguese possessions in the Far East. At the head of all this trade was the Viceroy who resided in Goa. As a result of all these conquests the Portuguese established a network of more than fifty forts and factories that stretched from Sofala to Nagasaki (Smith 1983, p. 221).

In the western Indian Ocean Zone the Portuguese tried to establish a trade monopoly. This failed as itinerant merchants easily by-passed them. The Portuguese lacked detailed knowledge of the interior and to overcome this they decided to move to the centres of gold and ivory production and trade. Their penetration into the Zimbabwean interior should be understood in this context (Axelson 1940, 1964; Beach 1980; Biilha 1982; Smith 1983).

When the Portuguese settled on the Mozambican coast they soon learnt of the civil wars in the interior which were weakening the Mutapa state. They also learnt of the wars between the interior and coastal rulers centred on the control of the trade with the coast. The rulers fought each other to gain exclusive rights to cloth and beads from Sofala and exchange this with gold produced in the interior (Biilha 1982, Ch. 2). So it seems whoever was powerful enough to control the coast also controlled the trade with Sofala. The volume of coastal-interior trade is largely undocumented and therefore unclear, but the monopolistic tendencies of the coastal rulers resulted in the collapse of the trade and the decline of Sofala. This was the situation until the late 1520s and this explains why the Portuguese traders left Sofala for the Zambezi Valley. In 1530 and 1531 the Portuguese settled at Sena and Tete respectively. By 1570 these areas effectively came under Portuguese control (Beach 1980; Biilha 1982).

The Swahili were based on the Island of Anoghe on the coast, and dominated the trade with the interior where they held markets at certain points. The Portuguese domination of the Swahili was aimed at eliminating them as middlemen in the trade with the interior. It seems that with the removal of the Swahili from the forefront of the commerce with the interior, the markets they had established in the interior declined. The Swahili traders relied on interior African traders to take whatever had remained unsold in the markets to be sold in the remote villages.

The volume, organisation and conduct of trade up to the middle of the 16th century is unclear. It seems that while some Swahili markets were in the process of decline, others persisted. The settlements of Sena and Tete had captains who were responsible for distributing merchandise to the Portuguese resident there to take into the Zimbabwean interior. We can only assume that these traders were protected by the interior rulers. Beach (1980, p. 260) asserts that a few Portuguese had settled in the interior by 1541 and some of them were conducting trade in a private capacity.

The events that led to the death of Father Gonçalo da Silveira in 1561 changed the course of events in the Mutapa state. It is difficult to say whether the abortive attempt to conquer the state was commercial or religious, but the demands by the Portuguese that the Mutapa expel all Swahili traders from his lands and surrender the gold mines to Portugal makes one suspect that the Portuguese wanted to control the terms of the Afro-Portuguese trade.

Following the Portuguese initial attempts at conquering the Mutapa state (1569-1575) they were never to establish a stable base in the interior. By the end of the 16th century the internal situation in the Mutapa state was already bad enough to generate conditions conducive to instability.

6.4.3 Archaeological sites mentioned in Portuguese written sources

Literature survey

Some of the early 16th century Portuguese writers describing the lower Zambezi valley and the Zambian plateau are Diogo de Alcaçova, Gaspar Veloso, Duarte Barbosa and João Vaz de Almeida. Alcaçova and Veloso describe the journeys made by Antonio Fernandes into the interior between 1511 and 1514, and have been cited in many secondary sources (cf. Godlonton 1945, 1960; Schofield 1949; Tracey 1940, 1968; Dickinson 1971; Summers 1971). The subject matter is widely known and only important points are commented upon here.
João de Barros's (1496–1570) *Da Asia* published between 1552 and 1613 is an important source. For the late 16th and early 17th centuries important writers are João dos Santos whose *Ethiopia Oriental* was published in 1609, Diogo de Couto (1562–1616) (whose 15 volumes were published between 1777 and 1788), Antonio Bocarro (1594–1642/3) and Pedro Barreto de Resende (d. 1651). Their works date to the mid-1630s. Bocarro’s most notable work is the *Decada XIII da Asia* covering the period 1609–17 giving a valuable and detailed description of Zambzia and the state of Oriental India. Pedro Barreto de Resende made certain improvements in the texts by Bocarro in his possession, adding new drawings (see for example Plate 579A in Cortesão & Teixeira 1960 vol. 5).

Manuel de Faria e Sousa (1590–1643) whose work entitled *The Portuguese Asia, or The History of the Discovery and Conquest of India by the Portuguese* (in 3 volumes dating 1666, and 1674) covers many subjects including history from 1412 to 1640.

All these sources are compiled in Theal (1898–1903), and they are examined here from two-levels of specificity. Firstly, documentary evidence of the settlement structure in the Mutapa state is provided, at the same time seeking detailed information pointing to the origins of certain categories of archaeological sites, especially in the late 16th and the first two decades of the 17th centuries. Secondly secondary historical data is used to summarise the historical developments in the Mutapa state pertaining to the rest of the 17th century. This sets a platform for an evaluation of the role of merchant capital in creating conditions analogous to the decline or collapse of complex societies.

The settlement structure

A examination of selected documents pertaining to the Mutapa state shows the following categories of site:

1 state capitals
2 ‘great stone buildings’
3 trading centres
4 fortifications
5 ordinary village settlements

This categorisation has some implications towards ranking showing the level of societal organisation that had been attained within the Mutapa state by the historical period. Category 1 sites have yet to be identified in the field. This is difficult, even with the clues given in some cartographic specimens as to where such sites are. Antonio Bocarro, writing on the fortifications the Portuguese built in the Mutapa state said the following:

The last and most important fort which we have in Mocaranga is one Dom Nuno Alvares Pereira commanded to be built in the court of the emperor Dom Philip Mavura, when they raised him to the throne, placing in it thirty Portuguese soldiers, all very good shots, with their captain. It was afterwards abandoned when the emperor changed his residence, after everything was set on fire, as was necessary, and there is no known fixed spot where the thirty soldiers remain, but they accompany the emperor in all his wars wherever they may be carried on these lands. (Theal 1898–1903 (vol. 2), p. 418)

Category 1 sites may have been deliberately destroyed, and during the 17th century this seems to have been dictated by political considerations. However, although the sites seem to have been occupied for a brief period of time, they should leave some archaeological evidence. Sites of category 2 have been identified, and these probably are of the Great Zimbabwe tradition. At least one trading centre (category 3) is known, and could be Masapa. Places used by rebels fighting the Mutapa state during the late 16th century and the beginning of the 17th can be regarded as fortifications (category 4). We can assume that category 5 is represented archaeologically by diagnostic ceramic scatters although I have not been able to differentiate non-walled state residences from ordinary villages.

1 state capitals

Most Portuguese written sources cover events at court but do not give details where the specific state capitals were located.

Diogo de Alcaçova’s letter to the king in 1506 makes the earliest reference to a royal (state) capital (da Silva Rego & Baxter 1962–1975 (vol. 1), pp. 389–99). It mentions a city ‘...called Zimbany ... which is big and where the king always lives ...’ (p. 393). In this city the houses of the king were ‘of stone and clay and very large and on one level ...’ (p. 395). Within the same kingdom are ‘... many very large towns and many other villages ...’ (p. 391). The same account with a slightly different English translation is found in Theal 1898–1903 (vol. 1) (pp. 62–8).

Gasper Veloso who described the journeys made by Antonio Fernandes into the interior stated that:

thence to Embiri, which is a fortress of the king of Mene-mutapa and is now made of stone without mortar, which is called Camanaya, and where he is always to be found... (da Silva Rego & Baxter 1962–1975 (vol. 3), p. 183)

Duarte Barbosa’s account touches on Swahili trade with the local people. He refers to ‘Zimboche’:

Going further towards the interior fifteen or twenty days’ journey there is a very large town which is called Zumboche, in which are many houses of wood and straw, which is of
heathens, in which the king of Benametapa frequently resides, and from it to Benametapa is six days’ journey, which road goes from Sofala inland towards the cape of Good Hope. In this same town of Benametapa is the usual residence of the king, in a very large place, whence the merchants take to Sofala gold which they give to the Moors without weighing for coloured cloths and beads which among them are most valued.... (Theal 1898–1903 (vol. 1), pp. 95–6)

This has been identified as the site on Samanyai Hill, 30 km south of the Zambesi-Musengezi confluence (Mudenge 1988, pp. 77–8). However caution must be exercised here as this has not been confirmed archaeologically, and it is extremely difficult to trace the route taken by Antonio Fernandes.

During a revolt at the beginning of the 17th century, one of the rebels is reported to have been based in Mataria mountain, lying between Massapa and Mutapa’s zimbabwe (Bocarro. Decade. Ch. XXVI, in Theal 1898–1903 (vol. 3), pp. 364–7).

Bocarro locates Mutapa Gatsi Ruse’s (1580s–ca 1624) capital near a river called Motambo (Theal 1898–1903 (vol. 3), p. 364). This location is not supported by available cartographic evidence. Other locations are relative, and therefore difficult to locate geographically.

A document from the Archives of Propaganda, Rome dated c. 1631 describes a place called ‘zimbaebo’ as

a royal city of Monomotapa, very near the above named Mazapa [Massapa]. It is said to be a large city. There is no church, but there are many Christians who are refugees compelled to live there. The monks cannot come here as they are not able to pay the submission and adoration which he exacts them all. (Ethiopia Oriental, in Theal 1898–1903 (vol. 2), p. 439)

Fr. Louis describes the Mutapa’s zimbabwe as being a night’s journey away from Massapa. On the 17 November 1628 Mutapa Kapetiridze had killed a Portuguese ambassador, Jeronimo de Barros. The Captain of the Gates was at Mutapa’s zimbabwe at that time and had to escape to Massapa, taking him a night’s journey (Letter from Friar Louis, of the Order of Preachers, to his Provincial 3 February, 1630 (in Theal 1898–1903 (vol. 2), pp. 427–8).

In 1723, Frei Manuel de Santo Thomas reported that the court of the Mutapa was located near ‘Musuriri or Quintuiriri mountain’, estimated to be 199 leagues from Tete (Footnote 101. In Randles 1975, p. 16). Randles identifies the ruling Mutapa at the time Santo Thomas was writing as Joao Inhapando, who is said to have built his court ‘in the Mavangor mountains about 50 leagues from Caboraca’ (Footnote 102, Randles 1975, p. 16).

An anonymous document written in 1683 locates the Mutapa’s court to the extreme north of the plateau (Footnote 33. In Randles 1975, p. 7). Manoel Pacheco who travelled through the region in 1861 located the Mutapa’s court in Chidima (Footnote 34, Randles 175, p. 7), showing that it had moved from the plateau area.

Some descriptions of state centres are available. Bocarro describes the court of the Mutapa:

The dwelling in which the Monomotapa resides is very large, and is composed of many houses surrounded by a great wooden fence, within which there are three dwellings, one for his own person, one for the queen, and another for his servants who wait upon him within doors. There are three doors opening upon a great courtyard, one for the service of the queen, beyond which no man may pass, but only women, another for his kitchen, only entered by his cooks. (Theal 1898–1903 (vol. 3), pp. 356–7; cf. Manuel de Faria e Sousa, in Theal 1898–1903 (vol. 1), p. 23)

Documents do not give adequate detail on the settlements around the palace. de Sousa (quoted in Mudenge 1988, p. 78) puts the size at 1 league circumference with houses constructed within a stone throw of each other. A league is an obsolete unit of distance of varying length but approximately 3 miles (4.8 km) (cf. Hanks, McLeod & Urdans 1990, p. 873). The Mutapa had nine compounds excluding those for his wives and children.

The only detail we have on the size of the capital comes from Fr. Joao dos Santos who estimated the city of Quive to have a population of around 3000–4000 men who went regularly for hunting parties (Theal 1898–1903 (vol. 3), p. 208). This figure however does not reflect the entire population of the city, and we can only assume that there were as many women and children.

2 ‘great stone buildings’

Reference to ‘great stone buildings’ is made by Joao dos Santos who worked as a missionary in the Mutapa state from 1585 to 1595. He mentioned Mt Fura:

On the summit of this mountain some fragments of old walls and ancient ruins of stone and mortar are still standing, which clearly show that once there were houses here and strong dwellings, which are not to be found in all Kaffirria, as even the king’s palaces are built of wood covered with clay and thatched with grass. The natives of these lands especially some aged Moors, assert that they have a tradition from their ancestors and that these houses were anciently a factory of the queen of Sheba, and that from this place a great quantity of gold was brought to her, it being conveyed down the rivers of Cuama to the Indian ocean.... Others say that these are the ruins of the factory of Solomon, where he had his factors who procured a great quantity of gold from these
lands conveying it down the same rivers to the Indian ocean They say further that the gold of Ophir which was brought to Solomon was from a place called Fura or Afura, and that there is little difference between Afura and Ophir, which name has been corrupted by the changes of time in the ages between that period and the present. (Theal 1898–1903 (vol. 7), pp. 275–7)

Diogo de Couto incorporated dos Santos’ account in Decada IX of his Da Asia of 1616, but does not mention Mt Fura as the location of these buildings. He (Decade IX, Ch XXV, in Theal 1898–1903 (vol. 6), pp. 390–2) refers to ‘great stone edifices’ near two trading stations within the Mutapa state. He refers to the Queen of Sheba as the builder of the places in question:

…and even at the present day in those parts at the markets of Masapa and Narbetura there were great stone edifices which she commanded to be built for herself which are called Simbae by the Kaffirs, and which are like strong bulwarks. These the Kaffirs always consider as the means by which the Monomotapa obtained dominion over all Kafiria from the Cape das Correntes to the great river Zambesi, which divides the land of Mocaranga, as they call all the country of Monomotapa from Mozimba.

Manuel de Faria e Sousa, certainly using some of the earlier sources, also commented on the stone buildings found in the Mutapa state:

Here are some buildings of wonderful structure with inscriptions of unknown characters, but the natives know nothing of their foundation (Theal 1898–1903 (vol. 1), p. 15).

3 trading centres

This section describes trading centres found in northern Zimbabwe, some of them in the research area. Excluded is the site of Luanze (Garlake 1967a) and other trading places to the extreme north-west and west.

Massapa: Numerous references to Massapa are found, some with locational data. The site was probably frequented by the Swahili traders before it became an official Portuguese possession after 1580 (Mudenge 1988, p. 222). João dos Santos (Theal 1898–1903 (vol. 7), p. 275) locates Massapa close to Mt Fura:

Close to the town of Massapa is a very high and grand mountain called Fura, from which there is a view of Monomotapa.

A church was built at Massapa some time in the late 16th century (dos Santos, in Theal 1898–1903 (vol. 7), p. 288):

This Monomotapa [Gatsi Ruseire] … admitted our religious into his kingdom, and gave them leave to build churches and establish Christianity there, as they at present do, and they have also built three churches in the principal places of his kingdom, in Massapa, Luanze, and Bocutu, where many Portuguese reside....

dos Santos (Ethiopia Oriental, in Theal 1898–1903 (vol. 7), pp. 270–3), gives details on the trade within the markets in Mocaranga, the heart of the Mutapa state:

After merchandise has left Tete by land … it is carried over a great part of the kingdom of Monomotapa to three villages situated in this Mocaranga, at some distances from each other, which they call fairs. They are Massapa, Luanze and Manzovo, in which places the residents of Sena and Tete have houses called churros where they store their merchandise, and from which they sell it and send it to be sold throughout the country. The principal of these market places is Massapa, where a Portuguese captain always resided, who is elected by the Portuguese of these rivers, the appointment being confirmed by Monomotapa....

Diogo de Couto (Da Asia, in Theal 1898–1903 (vol. 6), p. 369) says ‘Massapa is the third market, which is reached by travelling along the river Masouvo, and is fifty leagues from Tete. This market is very extensive and very rich.’

Antonio Bocarro adds that this market, is situated 40 leagues from the River Manzovo, 50 leagues from Tete and 10 from Bokuto. It is the principal and largest of all the markets in Mocaranga. (Theal 1898–1903 (vol. 3), p. 354).

All markets are described as ‘villages’. All had churches of the religious order of Saint Dominic; there are some slaves who are numerous for some of the Portuguese have more than three hundred, all Christians.

The richest gold mines were located close to Massapa, in an area called Fura (Couto, in Theal 1898–1903 (vol. 6), pp. 366–7). This is repeated in a later account by Manuel de Faria e Sousa who identified Fura with ‘… the Ophir where the queen of Sheba had her riches, when she went to Jerusalem’. (Theal 1898–1903 (vol. 1), p. 22)

The legislation passed by the Portuguese allowed for the establishment of the official representative of the Portuguese called Captain of the Gates. All the Portuguese coming into the Mutapa state had to pass through this place. This representative also had authority over other Mutapa subjects in the area around the trading centre, meaning he was some kind of a local or regional administrator:

There also resides in Massapa a Portuguese Captain who is called the Captain of the Gates, asked for by the Monomotapa, and appointed by the traders by the order of the Captain of Mozambique. Through this Captain the Monomotapa...
Massapa is extensively mentioned in Portuguese sources referring to the civil war in the Mutapa state at the beginning of the 17th century. Within the first 10 years of the 17th century, Massapa came under increasing attack from the rebels operating from the mountain of Chizungu fighting Mutapa Gatsi Rusere. (Bocarro, Decade, in Theal 1898–1903 (vol. 3), p. 382). A fort was built on the site by Diogo Carvalho who had just been appointed as new Captain of the Gates. Captain Pedro Barreto Rezende, a secretary to the Viceroy of Goa, the Count de Linhares, writing before 1635 and using earlier works, added that the fort

... is built of mud, with loopholes in the same form as others. It is preserved and maintained by the Portuguese and merchants who trade through the country. (Theal 1898–1903 (vol. 2), p. 417)

Axelson has dated the building of this fort (chuambo) to 1610 (Axelson 1964, p. 35).

Documents from the archives of Propaganda in Rome, copied in Ethiopia Oriental and dating to c. 1631, describe ‘Mazapa’ as a ‘town’ with a church similar to that found at Dambarare (Theal 1898–1903 (vol. 2), p. 438).

In November 1628 Massapa is reported by Fr. Louis as having been occupied by Mutapa Kapararidze who was fighting a war against the Portuguese (He had turned against the Portuguese after killing their ambassador at his court). The Portuguese claim to have defeated this army and proceeded to occupy the state capital (Letter from Friar Louis, of the Order of Preachers, to the Provincial (dated Feb 3, 1630) (Theal 1898–1903 (vol. 2), pp. 427–8).

From the 1630s the importance of Massapa seem to have declined. Conditions in the Mutapa state were at their worst with civil war and lawlessness. Some Portuguese and praço holders are reported to have raised private armies which were used to rob, kill and enslave people. Private fortifications are also reported. This caused a serious depopulation in the centre of the Mutapa state, with people running away from the gold producing areas. Towards the 1680s, conditions worsened in the state, with disease decimating the human population in the area. The Portuguese could not stand this either, and Axelson (1964, p. 154) reports that only about 50 remained in the whole of the state.

Beach (1980, p. 36) mentions that west of Massapa and the area close to Mt Fura was resettled by new groups of people following the wars that disrupted the Mutapa state during the first half of the 17th century. These areas had been depopulated by civil war.

Massapa was attacked and burnt in November 1693 by a force led by Changamire, who had previously destroyed the Portuguese trading post of Dambarare. Changamire and his Rozvi army found the site abandoned (Beach 1980, p. 140, 232). Only feiras in Manyika were not abandoned until in 1695 when the Changamire attacked them. The Portuguese fled to Sena and Tete on the Zambezi and Sofala on the coast.

Bokuto: Couto describes ‘... a second market place called Bucoto ... situated between two ... small rivers, which ... join the large one [Nausov]. This place is two leagues from the banks of both rivers. It is forty leagues from Tete and thirteen in a direct line from the market of Luanhé.’ (Theal 1898–1903 (vol. 6), p. 368). Felipe writing in 1608 (quoted in Axelson 1964, p. 6) described Bokuto as being along side the Mazowe River and 10 leagues from Massapa, 40 leagues from Tete, and between the Mazowe and Nyadiri.

Axelson and Abraham identified this site with a loop-holed stone structure overlooking the Mazowe from a low rocky bluff immediately above its confluence with the Nyadiri. This identification does not tally with the description given of the site in the written sources.

Matafuna: Matafuna was probably another trading centre, but not an official Portuguese market. Documents from the archives of Propaganda in Rome report it as another fort in Mocaranga, where gold mines are found. It was ‘... built of stakes like the rest and has within it a church served by friars of St Dominic.’ (Theal 1898–1903 (vol. 2), p. 417).

Manzovo: The status of this trading centre is ill defined. Documents do not specify where it is found, and it is only referred to in passing. Couto makes references to this market (see above). Originally the site might have been a mine close to the Mazowe (Manzovo), or may have been confused with Bokuto, also near the Mazowe.

4 fortifications

There are basically two categories of fortifications; hilltop settlements used by rebels against Mutapa-Portuguese attacks, and earthworks built by the Portuguese outlaws and praço holders to effectively control the gold producing areas of the Mutapa state and part of the Zambezi.
Lack of stone may have forced people in the lower areas of the Zambezi valley to use wooden stockades as fortifications.

Hilltop settlements: Written sources do not specify the nature of hill refuges built or used by the rebels who fought Mutapa Gatsi Rusere during the late 16th century and the beginning of the 17th. We can assume on the basis of the archaeological evidence found in some of the places mentioned in the documents that most of the refuges were ordinary houses or villages encircled in some cases with stonework.

Chizinga and Matarira: The events surrounding Chizinga and Matarira tie in with some of those mentioned in connection with Massapa above. Extensive reference is given by Bocarro (Theal 1893–1903 (vol. 3), Ch. XXV. pp. 361–4, Ch. XXVI pp. 364–7) and parts of the story appear in Manuel de Faria e Sousa (Theal 1898–1903 (vol. 1), pp. 37–40). A simplified picture is presented here as to what documents say about the places in question. Full historical treatment and relevant comments are found in Axelsson (1964, Ch. 3, pp. 30–39), Beach (1980), and Mudenge (1988, Ch. 6, pp. 210–45). In 1597 Chunzo, who lived in the Zambezi valley, rebelled against Mutapa Gatsi Rusere ravaging the gold producing areas of Chironga and Nhanha. One of Chunzo’s generals, Chicanda, penetrated the state coming close to Mutapa’s zimbabwe near Motambo river. He was allowed to stay in the state as a vassal, after asking for pardon. Some of the rebels had already retreated, destroying food supplies in the process, and rendering the Mutapa’s army ineffective. Mutapa killed one of his captain generals as a result. In c. 1599 Chicanda rebelled, attacking some of the villages directly controlled by the Mutapa. The Mutapa sought Portuguese assistance from Tete. Chicanda is said to have built a fort from thick wood, surrounding by a ditch. This fort is said to have been located on a high place, and had loopholes.

Meanwhile the killing of one of the captain generals of the Mutapa (Ningomoxa) caused a revolt in one of the areas of the state (Antaoua). It was led by Chiraramuro, who went to ask for assistance from another ‘powerful Kaffir of the kingdom.’ The powerful Kaffir killed Chiraramuro. This ‘powerful Kaffir’ is probably Chunzo but Mudenge (1988, p. 228) identifies him with one of the vassals of the Mutapa.

Chunzo was eventually defeated and killed with the assistance of the Portuguese. However his general, Maturianhe, reorganised Chunzo’s army and continued the rebellion. He raided the area under the control of the Mutapa state using the mountain of Matarira as a base. Maturianhe assigned three of his generals to different areas of the state. One rebel (Anconhe) controlled Antaoua, the second rebel, Chiroudanda, controlled Nhemboe, while the third, Inhamazino, operated from Chizinga.

The war dragged on for some years. Mutapa Gatsi Rusere, despite Portuguese assistance was deposed from his throne, and his capital taken over. In a desperate situation, he surrendered all his mines to the Portuguese Crown so as to receive some assistance (Bocarro, in Theal 1898–1903 (vol. 3), pp. 366–7). This has been dated by Bocarro to August 1607. A joint Mutapa-Portuguese army is said to have engaged the rebel Anconhe, forcing him to flee to Chizinga where he joined another rebel called Gurapaza (Bocarro, in Theal 1898–1903 (vol. 3), Ch CXXVIII pp. 370–2). Bocarro reports that some of the villages in Chizinga were attacked and razed but the Mutapa and the Portuguese forces were eventually forced to retreat to the Manzovo (Mazowe) river.

So utter was the defeat that the enemy suffered at their hands, that Anconhe never raised his head again, but fled to the mountain of Quisinga where the other rebels had fortified themselves, of which Gurapaza, of whom I have spoken, was lord. Our people sacked nine large villages where he dwelt with his people, and in which they found much spoil, and finally they set fire to them and razed them to the ground (p. 371)

Maturianhe facing no attack from the Mutapa-Portuguese coalition forces took control of the a large area of the state, stretching his conquests close to Tete (Inhabitano). His advance was checked by Diogo Simões, the Captain of Tete, with the assistance of the local people, and he was forced to retreat to Mrukanga.

After fighting some rebel groups in the Zambezi valley, Mutapa Gatsi fought the forces of Maturianhe again near Magida Cochena river. This place is reported to be ‘two days’ journey’ from the Gatsi’s capital where Maturianhe was initially forced to withdraw. He eventually proceeded to Matarira mountain (Bocarro, Theal 1898–1903 (vol. 3), p. 379). Maturianhe soon fought the Mutapa using Matarira as his springboard. He was joined by Anconhe and Gurapaza in Chizinga who fought the Portuguese at the trading centre of Bokuto. The Mutapa, assisted by Diogo Simões prevented his capital from being taken over by Maturianhe, who was forced to flee. With a Portuguese garrison left to guard his zimbabwe, Mutapa followed Maturianhe to Matarira, where he dislodged him, forcing him to flee to Chizinga (Bocarro, Theal 1898–1903 (vol. 3), pp. 379–80). The end of Maturianhe’s revolt was less dramatic as Bocarro ends his account with the assassination of the rebel.

It appears the threat from Chizinga continued even after the assassination of Maturianhe. This forced the Portuguese to build a stockade at Massapa in 1610, which was raided twice by the rebels. The Portuguese, who only numbered 50, were given extra protection by the Mata-
pa, whose soldiers built a palisade a 'short distance away from the Portuguese fort'.

Relations between the Mutapa and the Portuguese were soon to change. The Portuguese refused to pay their trade tax (called curva) to the Mutapa, leading the latter to impose a ban on the trade within the state. The Portuguese ignored the sanctions and continued to trade. The Mutapa acted swiftly to enforce the ban by raiding and killing the Portuguese traders, confiscating their property in the process. The Portuguese at Massapa entered into a secret agreement with the rebels of Chizinga, which resulted in a joint attack on the Mutapa's garrison at Massapa. This incident forced the Portuguese to leave Massapa for the Zambezi Valley.

What the Portuguese were after at this time were the mines, particularly those of silver reportedly located somewhere in Chikova in the Zambezi valley. They had realised the weakness of Gatsi and even prepared a conquest of the whole state. The building of the forts such as St. Estevao (by Dom Estevao) and St. Miguel (by Madeira) on the Zambezi between 1612 and 1614 must be understood in this context. (Theal 1898–1903 (vol. 3), pp. 385–6; 397–8). They even rejected some of the gestures of peace made by Mutapa Gatsi. Earthworks (chuambos): Earthworks are described by João dos Santos and Diogo de Couto in their accounts on the Zimba who had occupied the area near Sena during the captaincy of Dom Pedro de Sousa (Diogo de Couto, Theal 1898–1903 (vol. 6), pp. 392–410, dos Santos, Theal 1898–1903 (vol. 7), pp. 290–304). The Zimba prepare for battle as follows:

... they construct many high banks of wood, earth, and trees, in a very short time, as there are such numbers of them, and these banks are sufficiently strong to resist cannon. (de Couto, in Theal 1898–1903 (vol. 6), p. 393)

These fortifications are called chumbo or chuambos (de Couto, in Theal 1898–1903 (vol. 6), p. 394) had 'loopholes through which to shoot their arrows ...' (p. 405). When the enemy got close to the walls, the Zimba used boiling water and oil in addition to the certain long harpoons similar to fish spears which [they] ... hurled through the loopholes through the wall with which they wounded and grappled all those who came near and drew them from within the loopholes, where they wounded them mortally. (p. 409)

These chuambos were defended using battle axes, arrows and assegais (de Couto, in Theal 1898–1903 (vol. 6), p. 406) and the arrows were also discharged from the top of the wall (p. 409). To defend themselves effectively the Portuguese and the local people of Sena were forced to build almost similar structures (de Couto, in Theal 1898–1903 (vol. 6), p. 404).

Rezende (Estado da India, in Theal 1898–1903 (vol. 3), pp. 410–18) describes the Portuguese forts or chuambos as: ‘... only a palisade of stakes, filled up inside with earth, allowing those within to fight under cover ...’ Massapa had one such fort (see above).

When Diogo Simões defeated Matsuzianhe in the land of Inhamazino he built a wooden fort close to the site of the battle, supporting it with 20 guns and 300 fighting men, all locals. This must have been sometime before March 1609, when Dom Nuno Alvares Pereira arrived in the Rivers of Cuana (lower Zambezi) to work as Captain of Mozambique.

A rebel called Motoposo is said to have attacked Mutapa Gatsi Ruseire in 1609. The description given by Bocarro suggests that he used wooden fortifications (in Theal 1898–1903 (vol. 3), see Ch. CXXX. pp. 376–9). Motoposo had a ‘brave and numerous army.’ He was able to resist the Mutapa’s forces for a while, but was soon defeated, the Mutapa’s forces ‘being more numerous and assisted by the guns of the Portuguese which gave then greater courage’ (p. 377). Motoposo fled.

Our people pursued him, and entered two forts which he had, sacked them of much spoil and provisions which were in them, and finally burned and razed them to the ground. (p. 377)

The most detailed account of battles involving the use of earthworks and wooden stockades is also reported by Bocarro in the Zambezi valley. Supplementary detail can be found in Manuel de Faria e Sousa (Theal 1898–1903 (vol. 1), pp. 40–1). The story centres on a certain Chombe, who had refused to pay quit rent of cloth and millet the Portuguese had demanded as tribute and as restitution for some of the Portuguese he had with him. The Portuguese decided to attack him. Chombe was assisted by the people of Samungazi and Chitanbo, who numbered 6000. He had firearms (150 firelocks and muskets and 2 cannons) in addition to arrows. His fort is described as:

... half a league in length, and two musket shots in width, surrounded with a wall of thick wood encircled by a deep trench, and the earth from which the trench was piled against the wood, with many loopholes above, through which the enemy might fire securely unseen by our people. There were many bastions, flanked like the walls, from which they defended themselves, so that our people could not approach them without being killed or wounded. (Theal 1898–1903 (vol. 3), p. 389)

In response, the Portuguese under Diogo Simões had to build a stockade close to Chombe’s in order to fight him effectively. However they could not do so easily as:

... Chombe had with him more than eight thousand fighting men, very valiant and well provided with powder and ammu-
tition which the Portuguese and natives of the country had given and sold to him in exchange for negresses, millet and other merchandise which the Kaffir gave them, and thus surreptitiously and in secret he had furnished himself with firearms, in order that he might now grow proud and fortify himself against our people. This should have been carefully looked to, for the Kaffirs who were formerly terrified by the discharge of a gun now use them, and most of the powerful Kaffirs in these parts have a better arsenal of guns than there can be in the Captain’s factory. (Bocarro, in Theal 1898–1903 (vol. 3), Ch. CXXXV, pp. 390–1)

It was possible to know what happened in the other’s stockade only through spying or fugitives, and this was utilised to maximum advantage. Surprise attacks usually resulted.

In the morning the enemies came out of their fort with as much rejoicing as if they had already gained victory, thinking they would find but few of our men, and those unprepared. Thus they attacked our stockade in disorder and our people sailed out upon them, shouting Santiago, and attacking them with such impetuousity that in a short time they fled from the field, abandoning their arms, and many losing their lives. Such was the haste with which they retired to the fort that the doors could not admit them soon enough, nor could they crowd through, and our people killed more than a thousand of them there.

A stalemate was often the outcome as ‘everyday thereafter skirmishes took place during the morning and the afternoon, in which many were wounded and some killed on both sides.’ Bocarro adds that the reinforcements the Portuguese asked for from Sena had to build another stockade close by, but not without problems. They were always attacked by Chombe’s men. It seems that one of the most important sating factors to such fortifications was the proximity to water supply.

A joint attack on Chombe’s fort failed, proving very costly in terms of human lives with the fort itself being courageously defended. As long as Chombe knew what the Portuguese were planning to do, he made it difficult for them to defeat him. The only other option available to them was to stretch his resources by prolonging the siege. However Chombe’s defensive structures were very effective for it was possible to survive a long war of siege as long as the water supply and resources were available or close by. Both fighting parties had ammunition in the form of guns, cannon etc. Arrows were effectively used through loopholes.

It took more than two and half months to defeat Chombe. The Portuguese mounted a fierce attack which forced some of Chombe’s men to desert to the other side. The Portuguese acquired from these people the much needed intelligence to attack the fort. Three major breaches on Chombe’s fort ensured the Portuguese victory.

Chombe is reported to have fled into some thicket (Inhabatambara) (Bocarro, Theal 1898–1903 (vol. 3), p. 394) where he made another fortification. Although the Portuguese managed to dislodge him from this, they decided to withdraw to Tete, having been seriously depleted of food and other resources.

5 ordinary village settlements

There are many references to villages, particularly in the Zambezi valley. Details on sating factors are available for some places. Couto (Theal 1898–1903 (vol. 6), p. 276–7) describes the houses found in the Mutapa state as

... generally of wood, built in the shape of a pinnacle. Many pieces of wood are fastened to props like tent poles, and covered with thatch, clay, and thatch, and something which water will not penetrate. Some of these houses are built with pieces of wood so thick and long that they are like a large mast, and the larger they are the greater honour.

Bocarro (in Theal 1898–1903 (vol. 3), p. 354) describes market centres as villages (see above), suggesting settlement aggregation to take advantage of trade.

The turning point in Mutapa-Portuguese relations

An examination of Portuguese written sources (above) has indicated that conditions were conducive to the emergence of fortifications sometime in the late 16th, and the first 20 years of the 17th centuries. Therefore we should expect an increase in such sites for a considerable part of the 17th century if we are to understand the demise of the Mutapa state on the plateau area. Written sources are vague, understandably because the warlike atmosphere did not provide a conducive environment to record such events.

An understanding of events in the Mutapa state during the rest of the 17th century is therefore necessary if the interpretation of a certain category of sites in the research area as fortifications is to be accepted. A summary is given here as details have been published in numerous sources (see for example Axelson 1964; Beach 1980; 1984a; Mudenge 1988).

With the death of Gatsi Rusere in 1624, the Portuguese interfered directly with Mutapa court politics. Between 1634 and 1629, the state was engulfed in civil war. By 1630, Portuguese presence in the interior had increased considerably. It was also around this time that prazos were being established in the Zambezi Valley. The prazo system has been viewed by some scholars (Isaacman 1972a) as a phenomenon dating to the 18th century, but a close examination of the Portuguese written sources shows that the signs of this system were already present by the late 16th century (see Beach 1980, p. 130). The
The prazo system was largely parasitic in character, and therefore a major source of violence and conflict in the Zambezi Valley and adjacent regions.

The 1629 treaty between the Portuguese pazo holders and Mutapa Mavura, who had been given assistance by the former to fight Mutapa Kapararide for the throne, changed the course of events in the state. The Mutapa became a vassal of Portugal. The treaty allowed increased Portuguese presence in the state and gave unlimited access to the gold mining areas. The Portuguese were no longer answerable to the Mutapa, but the Captain of the Gates. It was now the Mutapa, and not the Portuguese who had to pay the annual tribute (called curva).

The treaty unleashed a wave of violence and unrest in which the main actors were the pazo holders and their slave armies, the chikanda. Trading places in the Angwa valley, Rimuka, and probably Urupande and Chitombworwizi were used during this time. Local people were attacked and slaves. Their cattle were seized. The situation was so terrible that many people fled the gold mining areas and the heart of the Mutapa state. The Portuguese were using all the violent means at their disposal to get the gold mined for them. Some pazo holders seized land that belonged to the Mutapa, effectively creating pazo within the state. Some local rulers joined them and beach (1980, p. 130) mentions the Nyachuru dynasty in the upper Mazowe near Damburare as an example.

The period from the 1630s to the 1660s is characterised by Mutapas who were weak in relation to the Portuguese. These are Mavura Mhando (1629-31, 1632-1652), Sii Kazurukumusapa (Citiate or Domingos) (1652-1655) and Dom Afonso (Cupica) (1655-1663). All had insecure reigns, as they depended on the Portuguese. Mudenge (1988) denies the fact that they were puppet Mutapas. All gave unlimited concessions to the Portuguese. However, Mavura, tried to control the behaviour of the Portuguese in the state by alerting the authorities in Portugal of the situation, and by confining the traders to the feiras.

The period from 1663 to the 1690s was dominated by Mutapa 'Mukombwe'. It is not clear whether Mukombwe was a single figurehead or a number of rulers stemming from the same dynasty (see beach 1980, p. 132; Mudenge 1988). It was during this time that the Mutapa state lost Mukaranga, its heart land on the plateau area. Mukombwe revived the state which had been seriously weakened since the 1630s by taking an anti-Portuguese stance. The Portuguese population in the Mutapa state had decreased considerably as it was no longer economically viable for them to stay. Disease was another contributing factor. Both Beach and Mudenge indicate that during the late 1680s, they tried to state a come back by increased occupation of the feiras.

In the 1660s and 1680s the Tonga of the Zambezi rose against the Portuguese. In the 1670s, the Chikanga of Manyika joined Mukombwe to fight the pazo holders. By the 1680s, the Mutapa state was slightly on a stronger position than before, and this ensured the defeat of the pazo holders. Portuguese dominance on the Zimbabwe plateau was established by Changaire Domba between 1693 and 1695. Beach (1984a, p. 34) points out that this expulsion did not break the basic trading pattern between the locals and the Portuguese, but saw a return to the pre-17th century trading patterns. The Portuguese were restricted to the coast and river ports and employed African instead of Muslim agents to conduct trade in the interior.

Source evaluation
Few sites (cf. Garlake 1973a, pp. 51-64) can be identified with the written sources. The first references to stone buildings in the interior of the Zimbabwe plateau are found in the Portuguese sources dating before 1520. No further reference was made to stone buildings until João de Barros published the first Decade of his Da Asia in 1552. His account on a site which has now been identified as Great Zimbabwe is second hand for there is no evidence of the Portuguese having actually been to the places mentioned. João de Barros must have obtained this account from the Swahili traders on the Mozambican coast via Pegado who left the place in 1538.

In Chapter XII of Da Asia (in Theal 1898-1903 (vol. 7), pp. 277-80), dos Santos gives several opinions concerning the region of Ophir and he associates Mt Fura with the region of Ophir. João de Barros was writing in the lower Zambezi region and some of his information was strongly influenced by Swahili traders operating in the Mutapa state. There is confusion in the reference to Fura as a region, and Fura as a mountain. It is possible that the account might not have been referring to sites on Mt Fura (which may not have been there at the time) but to stone structures of the Great Zimbabwe tradition found nearby. A Great Zimbabwe tradition site has been identified on a hill, east of Chomagora School (see Chapter 8). The hill, also known as Chomagora, is about 4 km north of Mt Fura.

The two accounts by dos Santos and de Couto relating to Mt Fura suggest that the structures found on it might be of considerable antiquity. This would be sometime in the 16th century or earlier. There is no reference to looped stone structures and the description supplied by dos Santos does not tally with what is actually found on Mt Fura. Mt Fura is a distinct landmark in the area in question and it is likely to have attracted fascinating tales on what was likely to be found in it, and not what was exactly within it. The sites these sources are referring to are probably of the Great Zimbabwe tradition if we accept parts of de Couto’s account.
The Solomonic legend was popular in Muslim folklore literature and folk religion. The Swahili traders used this to deny the local origins of the stone buildings as a way of establishing rights and privileges in the Mutapa state. They were struggling with the Portuguese for control of trade in the state (cf. Garlake 1973a, p. 55). Ophir was believed to be located somewhere in south-east Africa. The Portuguese seem to have accepted without a thought some of the tales coming from the Swahili traders (Garlake 1973a, p. 54).

This account was easily accepted by some Italian, English, French, Portuguese and Dutch geographers and cartographers during the entire 17th and early part of the 18th century. The Dutch who settled at the Cape in 1652 are reported to have sent expeditions into the interior to look for king Solomon's mines and temples. The Portuguese did the same in the early 18th century. This idea about Ophir and King Solomon persisted until the late 19th century and was popularized by H. Ridder Haggard in the 20th century in his novel *King Solomon's Mines*.

Researchers who have looked for evidence of archaeological sites from written sources, particularly stone structures, have ignored later Portuguese documents. It is in these references that information alluding to fortification is found.

We may assume on the basis of the written sources that there was little settlement differentiation from state capital to small villages. The characterisation of earthworks as typical Portuguese settlements seriously misrepresents the spatial context and scale of the trading settlements found within the Mutapa state. This is a later architectural development and represents a disruption rather than normal mode in the operation of these areas.

If distances are measured either in leagues or in 'days' journey it is possible to make approximations of the distance between some of the sites in the research area. Bocarro (Theal 1898–1903 (vol. 3), p. 354) estimates the distance from Tete to Luanze as 35 leagues or 5 days hurried journey. He also gives the distance between Sena and the Coast as 60 leagues or 7 days journey. In this case a day's journey would approximate 35–40 km. Mutapa's *zimbabwes* are reported as a night's journey from Massapa, while the rebels operating from Chizina are said to have attacked Massapa overnight. This represents an approximate walking distance of 35–40 km. If de Sousa's estimate of the size of the Mutapa capital is considered, 1 league circumference would give a diameter of approximately 1.5 km. This is consistent with the archaeological evidence recovered from Baranda and nearby sites such as Murehwa Farm and ceramic scatters found to the north and north-west in Manhondo Village.

The Matuzianhe revolt should not be treated as an isolated phenomena in the history of the Mutapa state for it amounted to an almost complete occupation of the Mutapa state, threatening its very existence. Some of the places mentioned in the written sources such as Chizungu mountain, and Nhemohe (Nyombwe) can be identified geographically. These are discrete territorial units of considerable distance apart, not far way from the Zambezi valley. The disturbance caused by this invasion lasted about 20 years (c.1597–1617).

The actual location of the place used by Chicanda as a fort has not yet been identified archaeologically, but it could have been somewhere between Massapa and the state capital because Bocarro says the Portuguese and the locals from Tete passed through Massapa on their way back home. It seems that Bocarro is confusing a normal Portuguese earthwork or *chuambo* and a stone built bulwark structure with loopholes.

The effects of the developments in the Zambezi valley since 1570 have not been widely appreciated. Both Beach (1980) and Mudenge (1988) report of parts of the Zimbabwes plateau being turned into some kind of *praça*. The archaeological implications of this have not been understood, although Hall's (1987) synthesis came closer to that. The development of the so called 'Zimba' manacce has not been taken seriously by researchers in Eastern Africa, and there has been no concerted effort to understand what the real phenomena was.

The use of earthworks as bulwarks was a feature well known in the lower Zambezi. It probably dates to the late 16th century. It was introduced probably in response to the introduction of firearms or siege warfare. Couto gives the date 1570, and together with dos Santos, connect this feature with the Zimba who are reported as cannibals, with a Zambian or Maravi origin.

The seriousness of the Zimba phenomenon can be understood from the Portuguese sources, despite some exaggerations. The Zimba threatened the very existence of the Portuguese in the Zambezi valley and disrupted the social and economic network of the local people in the area. The Portuguese had suffered a serious setback within the previous ten years when they failed to penetrate militarily into the Mutapa state. To their exasperation, fighting the Zimba took them two months (de Couto, in Theal 1898–1903 (vol. 6), p. 409), only to be defeated in the end. The last three decades of the 16th century must be viewed as particularly terrible for the lower Zambezi valley and adjacent communities. Serious drought might have disrupted the availability of food resources, and it is not preposterous to see some communities resorting to cannibalism.

The ripple-effects of the developments in the Zambezi valley on the Mutapa state can be seen in the form of the Chunzo-Matuzianhe revolt. This is where the Mutapa state experienced one of the greatest challenges to its existence. The archeological evidence for this kind of near collapse would be fortifications.
6.5 The landscape and the settlement structure from the written and cartographic sources: an overview

This chapter has given details of archaeological sites of the historical period in the area of the Mutapa state. There are obvious limitations in the written and cartographic sources but however, we should use them to try and address broader issues relating to the research problems presented in Chapter 1, the landscape as presented in Chapter 2, and the analytical context for later periods as given in Chapter 3.

1. From the sources we can deduce two levels of interaction. Firstly, the sources clearly indicate how northern Zimbabwe was firmly integrated into the western Indian Ocean zone commercial network by the 16th century. The second level of interaction is indicated by the trading and other places. The relationship between these sites and those of Mutapa state is crucial in understanding the archaeological character of the latter.

The next general point concerns the size and character of the territory of the state. In Chapter 2, mention was made of a captain major of the Mutapa who controlled the vast lands and trading places in the territory of Nyahcwe (?Nyaguwe). It is clear therefore that the trading places were established according to the dictates of the local rulers (cf. Sinclair 1987, p. 161; Bhila 1982). At the close of the 16th century, Friar dos Santos points out that the authority of the Mutapa state as being strong in Mukananga, but weak in peripheral areas such as Uteve, Madanda and Manyika. The picture portrayed by the written sources is that of the rise of semi-independent chieftains in the periphery where break away tendencies were strong. The reasons for this are twofold: first the distance from the centre (Mukaranga) to the periphery was too long to allow effective political control of the whole state, and secondly the elite in the outlying provinces wanted to control the terms of coast-interior trade.

The next point pertains to northern Zimbabwe as a landscape perceived by the Portuguese. The Mutapa state is regarded as a territory of rivers (Rios de Cuama) and mountains of gold (sierra de ouro). Although the Portuguese experienced and recorded this landscape, their perception of the Mutapa state is governed by the demands of external trade. This is why the written sources are vague on the relationship between the Mutapa state and areas further to the south (Great Zimbabwe) and southwest (Turwa-Khami) (see Map 2).

A range of archaeological sites found in the area controlled by the Mutapa state is alluded to in Portuguese written sources. Sites with a large volume of imports may be regarded as places of Afro-Portuguese contact. The local ceramics between major recipients and smaller sites should be similar typologically, and so should the imports. Other sites with a considerably smaller volume of imports were probably less important in terms of trade, or reflect a disruption of trade. The ceramics recovered in Afro-Portuguese settlements should then be correlated with those of known ceramic traditions in the region. Therefore a variation ought to be expected in the material culture in the research area. It is the complexity or simplicity of the material culture as seen in the archaeological record that should reflect the differentiation synonymous with the definition of state.

There is a problem in correlating state capitals as presented in the written sources with the archaeological data. If site size is taken into consideration, Baranda would be accorded this status, but cartographic data does not indicate the existence of a capital site in the area during the 16th and 17th centuries. However there is evidence indicating that some of the capitals were located north of the Ruya, and future surveys should concentrate in that area.

Sites that could be defined as villages, such as Bhaskiti Fields and Murehwa Farm have been located in the research area, and their material culture (local pottery) compares closely with that found at Baranda. They are probably related to the historical period.

Sites with hilltop locations which are of difficult access were probably used as fortifications. The events of 17th century dictated such a response. Loophole stone structures and unwalled sites with similar pottery were located in the research area (see Chapter 4). The stone architecture and material culture of these sites does not present a case to argue that they were built by the basic population of the Mutapa state. They were probably constructed by population groups from the periphery of the state (see Chapter 8).

In the Zambezi Valley Portuguese activities resulted in widespread slavery and the rise of the war-lords. Portuguese aggressive but destructive commercial tactics overawed the Mutapa political system, which they later influenced considerably. This resulted in conflict and violence in the form of civil wars, Mutapa-Portuguese wars and the parasitic nature of the prazo system for a major part of the 17th century.

It follows that in the Mutapa state decline or collapse of social complexity is manifested in discontinuity, external invasion and the rise of peer polities, etc. In the absence of written sources, this phenomenon should still be accounted for. Should the Mutapa state represent a 'Refuge' culture, or have past researchers failed to understand the complex nature of the processes involved? The evidence is evaluated in Chapter 8.
7. DATA ANALYSIS AND INTERPRETATION

7.1 Introduction

This chapter presents the analyses of the ceramics (both local and imported), beads, fauna and other data from the research area. Architectural data is also presented. The spatial layout, and function of Baranda will be discussed in relation to the artifacts recovered mostly from the surface.

7.2 Ceramics

Ceramics form the largest artifact category recovered from all sites in the research area. The biggest assemblage came from the site of Baranda. A typological classification has been used to describe the ceramic material. Simple sherd counts have been used to make density maps at Baranda to interpret site use.

The weakness in pursuing a purely typological method has been demonstrated by a number of scholars favouring a multidimensional approach (cf. Von der Lecou & Pritchard 1984; Bennett & Blakely 1989, pp. 1-18). The alternative to typology is the organisation of a ceramic data base which aims at gaining insight into one or more of the many facets of past human life such as technology, economy and social organisation (Bennett & Blakely 1989, pp. 7-8).

Other types of information might be extracted from the ceramics besides those that Bennett & Blakely mention, for example values, ideas, beliefs, attitudes etc (Strange 1989, pp. 23-30; Arnold 1988). Strange (1989, pp. 27-39) suggests a number of steps to follow in ceramic analysis, two of which may be relevant for this work. These are the use of documentary and other literature to develop the historical and cultural context of the ceramics and the rest of the material culture; and correlating the historical and the cultural patterns gleaned from the literature with the patterns discerned on the distributions of the material evidence for ceramics.

Majewski & O'Brien (1989, pp. 81-97), also reacting to Bennett & Blakely (1989) have proposed an alternative data base for the ceramic analysis of the historical period. They recognized that in situations where the ceramics are supported by written records, definition of attributes may result in a typology that reflected the production and distribution of such pottery.

Ceramic analysis was done to define the range of variation of the ceramics and hence the traditions they represented, to define the diversity in the various assemblages, and to account for the spatial distribution of the material. A major problem with the material was fragmentation, which limited the information that could be obtained. Another problem was the manipulation of large ceramic assemblages as were found at Baranda (cf. Ortan 1979). Two kinds of typological analysis were developed for the local and imported pottery.

7.2.1. Local and imported pottery

Local pottery

Ceramic style generally reflects group identity (see for example Huffman 1971a, 1978, 1980, 1989a, 1989b). Ceramic style is used here to refer to vessels which have similar characteristics, including fabric, form and decoration (cf. Anderson 1984, p. 57). Usually the producers and users of a ceramic style belong to the same group, unless the former make the pottery solely for exchange and trade.

Southern African early and later farming communities have been defined by typology (see for example, Huffman 1974, 1978), and ceramic traditions have been used to delimit cultural boundaries (see for example Phillipson 1974, 1976; Huffman 1974, 1978). The terms tradition, phase and facies used in this chapter are borrowed from Huffman (1974, p. 3). Ware is used to refer to the place where the pottery was manufactured (Anderson 1984, p. 32), or initially identified. When vessels occur in a consistent style and in identical fabric they are referred to as a ceramic type (Anderson 1984, p. 32). A ceramic style is regarded here as a consistent association of types and a tradition as the time period of a manufacturing technique or a decoration and shape style. It is also a cultural entity synonymous with a community. The term sub-tradition may be used when the geographical limits of the tradition have not been adequately defined. Harare and Musengezi may be regarded as sub-traditions of an undefined broader ceramic tradition.

For the purposes of building up a primary sequence for northern Zimbabwe, this position is adequate. The main criticism of this approach is that in southern Africa in
general there has been a heavy emphasis on classification of pottery and pottery typology. Consequently, "half a century of Iron Age research has produced a lot of information about pots, but relatively little about people" (Hall 1987, p. 16). The main concern has been the definition of ethnic groups. In South Africa the preoccupation with ethnic classification reflects the method of control used by the minority government, and most archaeologists have worked in, and influenced by, this social and political environment (see the debate between Hall (1983) and Huffman (1983); see also Hall (1987, pp. 15–7, 20)).

In this work I combine pottery with architecture and other material culture objects to define complex processes. My typology is not only concerned with classification, but definition of cultural entities accompanied by evidence of human interaction as seen in the archaeological and historical records.

Huffman (1989b, pp. 5–6) argues that as long as ceramic style is complex it can represent the larger design field and cultural code, and be used to recognize groups of people in the archaeological record. A change in ceramic style in any given area or assemblage means that either there has been a migration, or some internal local development. Huffman argues that ceramic change should have at least two or three characteristics before it can be considered the product of a migration: first, change should be at the assemblage rather than the attribute level; second, that the change at the assemblage level should be abrupt, and third, this change should be widespread. When a migration occurs, the new group and new style must have existed somewhere else earlier.

Internal changes within a tradition may reflect growing or declining socio-political complexity, and this should be reflected in the material culture including pottery. Again, it is at the assemblage, rather than the attribute level that this change is most conspicuous.

According to Huffman (1989b), ceramic continuity embraces the entire ‘theme’ of an assemblage (shape, design and motif), rather than a few isolated attributes and should be an outgrowth of the change forming the sequence of ancestral phases. Continuity should be found in assemblages throughout the area.

In addition, cultural interaction/contact can be inferred from the ceramic material. Communities in the same geographical region and which are broadly contemporaneous do contact each other at different or varying levels of specificity, for example through conflict, trade, etc. This is a complex, multi-dimensional, and not a unilateral, process (see the examples given for eastern, southern and western Zambia in Chapter 3). Without ruling out independent development, we can surmise contact in the archaeological record when for example one assemblage (meaning community) has a number of traits usually associated or identified with another assemblage. In ceramics, shaping and decoration technique/motif combinations should illustrate these points.

Given the above theoretical positions, I now put forward evidence of cultural continuity and change, as well as contact, as seen in the ceramics from the research area. The link between the Great Zimbabwe tradition settlements in northern Zimbabwe with the Mutapa state has long been suspected but this has not been satisfactorily resolved. Ceramic evidence at Baranda suggests a continuity of the Great Zimbabwe tradition into the historical period. This probably represents a new phase of the Great Zimbabwe tradition, but evidence for this assertion is circumstantial. The only entity in northern Zimbabwe to have had connections with the coast during the historical period is the Mutapa state. We can propose that the Great Zimbabwe tradition sites in the research area belonged to the Mutapa state. I argue for the hypothetical existence of the undiscovered sites which would represent the continuation of the tradition with the loss of the stone walls.

On the other hand, the Mahonje tradition, proposed in an earlier chapter, represents a translocation of some population groups from the Zambezi valley area to the Zimbabwe plateau during the 16th, 17th and possibly 18th century. This was due to the civil wars in the Mutapa state, the expansion of both the Maravi and the Mutapa states, and the Portuguese commercial penetration of the interior. The tradition probably represents a cultural break from the Great Zimbabwe tradition, and may account for its demise on the plateau.

Thirdly, the Afro-Portuguese interaction or contact as reported in the written sources should be reflected in the ceramic record provided there is a sufficient sample to examine in detail. This is the main problem with pottery recovered so far from the earthworks.

The classification method used below illustrates these three points.

The method
To establish a sequence for the research area, I use an analytical procedure that reflects group identity at the assemblage level. This is the most appropriate level that defines stylistic units based on a consistent combination of shape form, decoration technique, layout and motif. This analytical procedure should isolate a tradition independent of stratigraphic control.

A data recording form was designed to create individual sherd summaries that would then be entered, stored, retrieved from and analysed using a micro-computer data base. For data capture or coding using computers, the reader is referred to Hultén (1974) and Richards & Ryan (1985). On the form all the relevant attributes and attribute states were considered. A simple coding system was devised aimed towards comparison or definition of sherd groups on the basis of attribute state differentiation.
The smallest unit of analysis was the potsherd. The various constituents of pottery, the shape or vessel profile, the material it was made from, its metrical dimensions, surface treatment and colour, temper, and decoration were considered as the basic attributes. Attribute states were derived from these.

Vessel shape and form

Due to fragmentation, sherds were categorised according to vessel parts of rim, neck, shoulder, body and base, or a combination of these. Complete vessel counts were avoided, each sherd being considered as a unit. Sherd categorisation using sherd units was also avoided. Isolating vessel parts is essential in defining shape forms. There are several methods to describe form units, for example Anderson’s (1984, pp. 36–48) description of Roman pottery or Shepard’s (1985) use of vessel contour. Sinclair (1985a, 1985b, 1986) uses vessel parts as defined by Nordström (1973) to sort broken assemblages into shape groups. Rice (1987) presents more than one method.

The smallest sherds were less than 1 square centimetre in surface area. Such material is difficult to handle. In the analysis, all sherds 3 cm square or less, except rims and necks, were grouped as fragments. The only exception to this definition were rim and neck sherds. Fragments were grouped according to surface treatment, counted and weighed.

Vessel parts were initially identified broadly as pots (restricted vessels with simple contour) or bowls (unrestricted vessels). These terms were not employed from a functional viewpoint but in reference to the general vessel contour or shape form. Majewski & O’Brien (1989, pp. 81–97) who made intensive analyses of 19th century ceramic material from north-eastern Missouri, argue that words like ‘pot’ and ‘bowl’ carry functional implications, but are also form related. Bowls, and to some extent crucibles, would fit Shepard’s (1985, p. 231) unrestricted or simple and dependent restricted vessels with simple contours (Figs. 21 and 22). Pots appeared as simple and dependent, or independent restricted vessels with composite or inflected contours (Figs. 23, 24, 25). An additional feature of some of the ceramic assemblages was the presence of vessels with a distinct corner point (carnation) (Fig. 25). Sherds which did not show any particular feature of the vessel profile were grouped simply as body sherds.

A total of eleven (Figs. 21–25) shape profiles were defined from the assemblages examined for detailed study. They are presented here as follows:

1a. Open hemispherical bowls (Fig. 21)
1b. Deep straight sided bowls (Fig. 21)
2. Open hemispherical bowls, slightly out-turned rims (Fig. 21)
3. Slightly constricted hemispherical bowls (Fig. 22)
4. Constricted hemispherical bowls (Fig. 22)
5. Necked bowls (Fig. 22)
6. Shouldered bowls (Fig. 22)
Decoration, surface treatment and finish, placement and technique

Sherd surfaces were smoothed, polished/burnished, graphite burnished, or polished with red slip/ochre. Rough, worn or corroding surfaces were common in some assemblages. Soot coating was regarded as a secondary surface appearance rather than a finish. Decoration attribute states of placement, technique and motif were defined as follows:

Decoration was either executed inside the vessel (for example bands of graphite burnishing), on lip, outside rim, on the vessel neck, on the shoulder or body or a combination of two or three of these locations or places. Some of the techniques used are explained below:

Wrapped wire, fibre or bead—this technique involved the use of a thin core on which was wound or wrapped a fibre or perhaps occasionally, wire. This was then impressed into the wet clay surface (Fig. 26). In some cases beads strung together were used to the same effect (Fig. 26). This technique was used on Munzegezi and Harare pottery (Pikirayi 1987; Sinamai 1990).

7. Shouldered pots with insloping rims (Fig. 23)
 a. Large
 b. Medium
 c. Small
8. Shouldered pots with concave rims (Fig. 24)
 a. Large
 b. Medium
 c. Small
9. Vessels with a corner point (carination) at shoulder (Fig. 25)
 a. Large
 b. Medium
 c. Small
10. Pots with vertical rims and externally thickened ('rolled') lips (Fig. 25)
11. Crucibles (Fig. 21)

Comb stamping—This involved the use of a multi-toothed tool or comb, square or triangular in cross section. Patterns were then impressed into the plastic surface of the vessel, and continuous stabbing produces a repeated pattern on the vessel (Fig. 27).

Fine line incision—The cutting into the pot with a sharp instrument while the clay is still wet (Fig. 28). In cases where parts of the clay surface are actually removed or cut away from the vessel surface the term *exicision* is employed (see Anderson 1984, p. 49).

Broad line incision (grooving)—The use of a blunt tool to scour fairly wide or broad, but shallow lines on the vessel surface (Figs. 29 and 30). This does not involve the removal of clay or cutting the clay surface. *Channeling* often found on Early Farming Community sites is a form of grooving (see Figs. 36 f, g).
Fig. 27. Decoration motif group II: Comb-stamping designs
1. simple or multiple horizontal to oblique band defined at either top or bottom by a broad line of incision
2. horizontal impressions of a plain tool defined at bottom by a broad line of incision (BLI)
3. horizontal band defined either at top or bottom by a BLI
4. horizontal band defined either at top or bottom by a BLI
5. multiple bands, probably horizontal, vertical or oblique
6. band produced by a plain tool
7. use of a recurved plain tool
8. use of beads to produce a impressed design
9. use of round to square toothed tool
10. use of a tool with triangular impressions.

Fig. 28. Decoration motif group III: Fine incised line (FLI) designs
1. horizontal band of oblique to vertical slashes defined either at top or bottom by a continuous line; or a band of multiple horizontal lines
2. alternate bands or panels of horizontal and vertical lines
3. herringbone pattern defined at top or bottom by a continuous broad line
4. horizontal band of cross hatching defined at top or bottom by continuous lines of incision; or triangular panels with cross hatching inside them and defined by BLI
5. ?rectangular or square panels, poorly done, ill defined (rare, found in looted stone structures and unwalled sites with a hilltop location)
6. (as explained).

Punctate or punching—The stabbing of the clay surface with dots, points or hollow cores using either a sharp pointed or blunt tool. Some motifs resulting from this technique were probably produced by the use of reeds or folded copper beads (Figs. 31 and 32).

Applied—This involves the addition of clay to the original vessel surface. Some vessels analysed had a cordoned, a projecting thin strip of clay applied horizontally, usually decorated with alternate diagonal impressions of broad lines or notched patterns (Fig. 33).

Bobbles/Bosses—These are clay additions on the original vessel surface, which appear on bowls as 'pimples' just below the lip, and in pairs or groups of three (Fig. 50 d; 54 m). In some cases sherds exhibit 'pits' or finger impressions (Fig. 41 b). Pits result from indenting or pushing parts of the surface of the vessel inwards to make a series of concavities. Bosses are an opposite effect of indenting, as they involve pushing a finger tip outwards on the walls of a vessel (Fig. 49 e).
Fig. 30. Decoration motif group IV: Broad incised line (BLI) designs (Panels)
P1. multiple horizontal bands with brown polish and graphite burnishing and oblique windows of alternate graphite burnishing and brown or red slip
P2. rectangular or square windows
P3. horizontal band of graphite burnishing defined by continuous broad lines on either side or red slip with triangles pendant or on top
P4. semi-circles
P5. probably same as P1
P6-P7. rectangular or triangular panels, recorded in loopholed stone structures and unvaulted sites with a hilltop location
P8. a combination of broad wavy lines and horizontal bands of incision [found in early farming community pottery].

Fig. 31. Decoration motif group V: Designs dominated by punctates
1. unclear; sherd too fragmented or small [not shown]
2. small circular punctates defined at bottom by BLI
3. small oval punctates defined by BLI
4. "reed" punctates either defined by BLI or in groups of four
5. large oval punctates in BLI
6. horizontal row/band of oval punctates
7. triangular punctates defined by a band of graphite burnishing (GB)
8. triangular punctates in semi-circles [rare]
9. triangles or curved BLI filled in with small round punctates [rare]
10-14. variants of punctates [rare]
Painting—Strictly, the only form of painting found in the research area is slippage. Colouring agents such as iron compounds were used but it is not clear how the mixtures were made (Fig. 33).

Burnishing—Where burnishing appeared in relation to red slipping, or in relation to plain smooth surfaces of the sherd, it was regarded as a painted design (Fig. 33).

Terrace—In some carinated vessels there is a ‘step’ towards the end of concave profile adjacent to the corner point. This ‘step’ runs parallel to the corner point and is sometimes decorated with cross hatching (Fig. 51 b, c; 53 j; 54 d). The term ‘terrace’ is used here for lack of a better term.

Perforation—With the exception of spindle whorls (Fig. 59), sherds with holes cut through the surface are rare. Only one sherd from the early community site of Swart Village exhibit this characteristic (Fig. 35 d).

In defining cultural entities, decoration technique is not necessarily the determinative factor. The decoration concept is more widespread than the technique (cf. Huffman 1980), but works well with complete vessels rather than fragmentary sherds. In my assemblages decoration themes are clearly defined and can be characterised for the sake of brevity by the following seven motif groups based on technique:

I. Wrapped Fibre designs (Fig. 26)
II. Comb Stamping designs (Fig. 27)
III. Fine Incised designs (Fig. 28)
IV. Broad Incised designs (Figs. 29, 30, 32)
V. Punctate designs (Fig. 31, 32)
VI. Painted designs (Fig. 33)
VII. Composite motifs (Fig. 34)

The results of the analysis
The results presented below are based on the analysis of shape forms and decoration. Details on lipform, firing, surface colour, size (for example, maximum and rim diameters, rim height, vessel height) and manufacturing techniques will be presented in separate site reports. In this work, these attributes are summarised in the descriptions of the assemblage groupings produced by the analysis. Some sherds from Baranda and a number of loop-holed stone structures await technological investigation.

A total of 11965 sherds from the three excavated sites of Baranda, Muchekayawa and Chengurume Hill (both the eastern and western sites) were analyzed. Pottery surface collected during site survey was also analyzed where samples were sufficiently large enough to show variability. The results are presented in Tables 6–16 and Figs. 35–58.

At least four assemblages can be isolated. These groups are synonymous with traditions, and bear cultural, spatial and chronological significance. They are described as follows:

Fig. 32. Decoration motif group V: Designs dominated by punches and broad lines of incision
1. ‘redsa’ or copper beads impressions defined by BLI
2. triangular BLI panels surrounded or partially filled inside with punctates
3. dots and red slip bands
4. variant of 1 above.

Fig. 33. Decoration motif group VI: Painted designs
1. single horizontal bands of graphite burnishing and brown or red slip paint
2. as explained in schema
3. multiple alternate horizontal bands
4. graphite burnished band on a polished vessel surface
5. triangular or chevron panels with GB and red slip.

Assemblage 1 (Figs. 35, 37, 38 and 42, a–e; Table 6)
The vessels forming this assemblage are generally thick bodied, well fired brown to reddish brown colour, sand or quartz tempered. Graphite burnishing is rare. The range of shape is limited to pots with insloping rims (Fig. 35 d) or slightly concave necks (Fig. 37, a–f), and probably hemispherical bowls (Figs. 35 a, l; 42 a). Some pots with stamped or incised decoration have externally thickened rims (Fig. 37). Simple rounded rims occur particularly on undecorated vessels. Decoration includes narrow horizontal bands of oblique comb stamping on or below the rim (Fig. 42 a, b). This is sometimes extended to the neck and shoulder (Fig. 35 f). Some sherds are decorated with oblique or vertical incised lines (Figs. 35 h–j, l–m, 37...
Fig. 34. Decoration motif group VII: Composite designs
1. circular low moulding surrounded by punctates
2. horizontal ridge with herringbone or chevron decoration, fine to broad line incision
3. horizontal ridge with bead impressions
4. oval moulding with deep BLI and deep circular punctates.

Fig. 36. Local pottery from Mupfuri River (Swart Resettlement Village).

...d-e; 42 d), while others have horizontal broad lines of incision on the neck (Fig. 36 f-g). Other sherds have a stab and drag pattern (Fig. 35 f-g) or thumb-nail impressions (Figs. 35 k, n; 38 c) mostly on the rim, while some have meander patterns or broad wavy lines, on the neck and shoulder (Fig. 36 a, b; 37 c; 38 a, b; 42 e). A summary of the decoration motif groups is presented in Table 7.

This pottery came from Madzinga Farm, Swart Resettlement Village on the bank of the Mupfuri (see Map 9), and the south-eastern foot of Mt Fura where (it was recovered in surface contexts), and from Baranda (Test pits XXVIII, XXIX, XLVI, and XLVII).

Assemblage 2 (Figs. 42 g-m; 43)
The material constituting this assemblage was highly fragmented, and only 36 sherds were identified. The pottery was recovered from Baranda from Trench 1A and Test Pit XXIX. In the case of the latter, it was mixed with sherds of Assemblage 1, described above in poorly defined stratigraphic contexts, but in lower levels. The pottery has simple straight and rounded lip forms (Figs. 42 h, i, m, n; 43 c, g, i), and decorated on the rim (Figs. 42 h, m, n; 43 e, g, i), and probably on the shoulder (Fig. 43 k) with horizontal bands of oblique to vertical wrapped fibre or bead impressions.
Fig. 37. Local pottery from Madzinga Farm (Farm 18, Chesa).

Table 6.

<table>
<thead>
<tr>
<th>shape form</th>
<th>rs</th>
<th>rns</th>
<th>ns</th>
<th>rnah</th>
<th>rnh</th>
<th>sh</th>
<th>rnsbh</th>
<th>bs</th>
<th>base</th>
<th>total frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>1b</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>1d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.5%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4%</td>
</tr>
<tr>
<td>7a</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4%</td>
</tr>
<tr>
<td>7c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>9a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>9b</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.5%</td>
</tr>
<tr>
<td>9c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.3%</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.3%</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>uncategorized</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>total</td>
<td>16</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>frequency</td>
<td>38.1%</td>
<td>11.9%</td>
<td>16.7%</td>
<td>2.4%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>31.0%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Key to vessel parts:
- rs: rim
- rns: rim/neck
- ns: neck
- rnah: rim/neck/shoulder
- rnh: neck/shoulder
- sh: shoulder
- rnsbh: rim/neck/shoulder/body
- bs: body sherd
- base: base sherd
Vessel shapes include open hemispherical bowls with straight or slightly out-turned rims (Fig. 39), slightly constricted bowls (Fig. 40 a), necked bowls (Fig. 40 b–f), vessels with insloping (Fig. 40 g–j) or slightly concave rims (Fig. 40 k–n; 41 a–e), vessels with short or tall vertical necks with out-turned lips (Fig. 41 f–k), and a few crucibles (Fig. 57 a–c). A notable feature of this assemblage is the high frequency of bowls (Table 9). The vessels are fired brown to reddish brown. The surfaces are polished or burnished elaborately with graphite or red ochre.

Decoration motifs derive from a combination of a number of techniques which include comb stamping, incision, notching, painting and moulding. The motifs vary from simple horizontal bands to more complex panels and composite designs.

The fine incised designs are presented as short, vertical to oblique slashes, multiple continuous horizontal lines or single horizontal continuous or discontinuous lines or cross or alternate lines. This produces either horizontal band of oblique to vertical slashes defined at top or bottom or both by a continuous line (Fig. 47 c) or alternate bands or panels of horizontal and vertical lines (Fig. 47 b), or a herringbone pattern defined at top or bottom by a groove (Fig. 45 m), or a horizontal band of cross hatching defined at top or bottom by a continuous line of incision (Fig. 44 h; 45 f; 47 f).

Broad incision combines most frequently with painted designs produced by graphite burnishing and red slip (Figs. 47; 48). The most common motifs are a horizontal band of cross lines (Figs. 47 m, 48 b), or horizontal bands with a herringbone pattern defined on either side with a groove and alternating with zones of graphite burnishing (Fig. 48 a), or multiple horizontal bands painted

Table 7.

<table>
<thead>
<tr>
<th>Motif</th>
<th>I(WF)</th>
<th>I(CST)</th>
<th>II(FLI)</th>
<th>IV(BLI)</th>
<th>V(PUNCT)</th>
<th>VI(APPL)</th>
<th>VII(COMP)</th>
<th>OTHER</th>
<th>total</th>
<th>frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(WF)</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>I(CST)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
<td>21.4%</td>
</tr>
<tr>
<td>II(FLI)</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>18</td>
<td>39.3%</td>
</tr>
<tr>
<td>IV(BLI)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>10.7%</td>
<td></td>
<td>0</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>V(PUNCT)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>21.4%</td>
<td></td>
<td>0</td>
<td>10</td>
<td>21.4%</td>
</tr>
<tr>
<td>VI(APPL)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>12</td>
<td>28.6%</td>
</tr>
<tr>
<td>VII(COMP)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>total</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>100%</td>
</tr>
<tr>
<td>frequency</td>
<td>7.1%</td>
<td>32.1%</td>
<td>10.7%</td>
<td>7.1%</td>
<td>42.9%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Key to decoration themes:

I(WF) wrapped fibre
I(CST) comb stamping
II(FLI) fine line incision
IV(BLI) broad line incision
V(PUNCT) punctates
VI(APPL) applied/painted designs
VII(COMP) composite designs
OTHER other designs, e.g. terraces, bobbles
with graphite red ochre or brown paint (Fig. 48 c), or bands of graphite burnishing and red ochre separated by a broad line (Fig. 47 h). Other incised designs include bands of oblique slashes (Fig. 45 l). Panels occur either in rectangular or square ‘windows’ (Figs. 44 k, l; 45 o; 47 e), or multiple horizontal bands with brown polish and graphite burnishing with oblique ‘windows’ of alternate graphite burnishing and brown paint or red slip (Fig. 48 d), or horizontal band of graphite burnishing defined by grooves on either side with triangles pendant or on top (Figs. 44 j; 45 q, r; 47 i; 48 e). Semi-circular panels have also been identified in this category (Fig. 45 a).

Punctates were probably executed with the aid of a thin or thick reed, a small tool with a rounded, oval, triangular or irregular cross section. The technique is normally combined with broad or fine line incision, and in some cases painting to produce designs illustrated in Figs. 44 a–d, m; 46 e–j; and 48 f–k.
Painted designs, combine with incised patterns and punctates but they also appear simply as single (Fig. 39), or double or multiple alternate horizontal bands of red slip and/or graphite burnishing (Fig. 44 e–g). Triangular panels also occur (see Fig. 46 j–l).
Moulded or applied designs are less common in the Baranda material but constitute a unique decoration category. Found were horizontal 'ribs' (Figs. 39 f, 45 s) or 'ridges' decorated with either herringbone, bead impressions or incision (Fig. 49 c–e). One sherd was decorated with a circular moulding with small rounded punctates defined evenly around it (Fig. 49 a), while another sherd had an oval moulding with deep lines of broad incision and rounded punctates (Fig 49 f). These motifs are regarded here as composite designs.

A summary of the combination of the decoration techniques is presented in Table 14 below.

Assemblage 4

This pottery is found in loopholed stone structures and associated sites with a hilltop or mountain location (Tables 10, 11, 12, and 13). It shares similar vessel profiles with assemblage 3, but in addition there are deep straight sided bowls (Figs. 50 b, f; 53 e; 54 l), pots with concave necks (Fig. 54 a, o) some of which have a carination on the shoulder (51 b–d; 53 i, j; 54 c–d), and a comparatively higher frequency of crucibles (Figs. 55–46).

Lip forms are generally simple, rounded and tapered. Bowls normally have vertical lips (Fig. 50 c–d), while vessels with a concave neck have their lips pointing outwards (Fig. 51 b–d). There is evidence of poor clay mixing seen from the variation in the size of the quartz temper grains, which are generally coarse to very coarse. The finish is rough to smooth, and there is less elaborate use of graphite burnishing and red ochre as compared to vessels of assemblage 3 (Fig. 53 b, h). Firing is poor, and the colour is grey to greyish brown. Compared to
Table 8.

<table>
<thead>
<tr>
<th>LOCAL POTTERY FROM BARANDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size</td>
</tr>
<tr>
<td>context</td>
</tr>
<tr>
<td>Surface collections</td>
</tr>
<tr>
<td>Test pits</td>
</tr>
<tr>
<td>Trench 1/1a</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

| frequency (%) |
context	rs	rns	ns	nsh	sh	bs	base	total
Surface collections	8.3	2.4	6.2	0.3	0.3	79.8	0.2	100
Test pits	13.4	0.4	8.8	0.8	1.7	74.7	0.2	100
Trench 1/1a	16.7	0.1	8.5	0.8	0.8	73	0.1	100
total	14	0.7	7.9	1.4	0.8	75.1	0.1	100

Summary of major typological elements

Shape forms

| Total classifiable sherds | 624 |
| Percentage of total sample | 6.9 |

Decoration

| Number of decorated sherds | 602 |
| Percentage of total sample | 6.7 |

<table>
<thead>
<tr>
<th>Shape forms correlated with vessel parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled surface collections</td>
</tr>
<tr>
<td>shape form</td>
</tr>
<tr>
<td>1a</td>
</tr>
</tbody>
</table>
| 1b | 1 | 1 | | | | | 0 | 0%
| 2 | 1 | | | | | | 1 4.5%
| 3 | 1 | | | | | | 1 4.5%
| 4 | 2 | | | | | | 2 6.7%
| 5 | | | | | | | 0 0%
| 6 | 1 | | | | | | 1 4.5%
| 7a | 1 | | | | | | 1 4.5%
| 7b | 3 | | | | | | 3 6.3%
| 7c | 5 | | | | | | 5 11.4%
| 77 | 1 | | | | | | 1 2.3%
| 77a | 5 | | | | | | 5 11.4%
| 77b | 1 | | | | | | 1 2.3%
| 77c | 1 | | | | | | 1 2.3%
| total | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 100%
| frequency | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 100%

| Test pits |
| shape form | rs | rns | ns | nsh | sh | bs | base | total frequency |
| 1a | 4 | | | | | | 4 50.0%
| 1b | 1 | | | | | | 1 12.5%
| 2 | 1 | | | | | 1 12.5%
| 3 | 1 | | | | | 1 12.5%
| 4 | 1 | | | | | 1 12.5%
| 5 | 1 | | | | | 1 12.5%
| 6 | 1 | | | | | 1 12.5%
| 7a | 2 | 1 | | | | 3 37.5%
| 7b | 1 | | | | | 1 12.5%
| 7c | 0 | | | | | 0 0%
| 77 | 0 | | | | | 0 0%
| 77a | 0 | | | | | 0 0%
| 77b | 0 | | | | | 0 0%
| 77c | 0 | | | | | 0 0%
| total | 5 | 0 | 2 | 1 | 0 | 0 | 8 100%
| frequency | 62.5% | 0% | 25.0% | 12.5% | 0% | 0% | 0% | 100%

| Trench 1/1a |
| shape form | rs | rns | ns | nsh | sh | bs | base | total frequency |
| 1a | 293 | | | | | | 293 51.2%
| 1b | 48 | | | | | | 48 8.4%
| 2 | 13 | | | | | 13 2.3%
| 3 | 1 | | | | | 1 0.2%
| 4 | 1 | | | | | 1 0.2%
| 5 | 1 | | | | | 1 0.2%
| 6 | 1 | | | | | 1 0.2%
| 7a | 1 | | | | | 1 0.2%
| 7b | 2 | | | | | 2 0.4%
| 7c | 30 | | | | | 30 5.3%
| 77 | 5 | 1 | 2 | | | 8 1.5%
| 77a | 1 | | | | | 1 0.2%
| 77b | 0 | | | | | 0 0%
| 77c | 0 | | | | | 0 0%
| total | 466 | 3 | 93 | 5 | 5 | 0 | 572 100%
| frequency | 81.5% | 0.5% | 16.3% | 0.9% | 1% | 0% | 0% | 100%
other vessels in the assemblage, crucibles are coarsely made.

Only 2.1%, 7.2% and 2.4% of the sherds at Muchekayawa, Chengurute Hill (eastern site) and Chengurute Hill (western site) respectively were decorated, but in general, vessels are undecorated (see Table 15). In cases where the decoration is found it is poorly executed, inconsistent in terms of layout and design, and varying from site to site.

The motifs documented at Muchekayawa and Chengurute Hills include horizontal broad lines of incision with punctates (Fig. 50 b); panels or bands of bead impressions (Fig. 52 f); panels or band of cross fine to broad lines (Figs 52 a–c; 54 g); obliquely incised neck defined by broad lines (Fig. 52 d); mouldings in the form of bobbles (one of which is decorated with some vertical short incisions (Fig. 50 d; 54 m); multiple horizontal broad lines of incision filled in between by oblique lines (Fig. 50 c); triangular panels of broad lines (Fig. 52 b); some comb stamping (Fig. 54 i); and short vertical to oblique incised lines (Fig. 54 e). One crucible was decorated with double horizontal rows of punctates on the neck (Fig. 55 a).

At Dombomarombe, a crucible had poorly defined punctates on the body, while a bowl from Ruanga valley was decorated with cross bands of graphite burnishing covering the whole interior. A vessel recovered from one of the enclosures in Mfura had a band of cross hatching immediately above the corner point, while another had a horizontal band of oblique comb stamps.

Identifying the assemblages

The assemblages are dominated by at least four decoration themes or trends:

Theme I is dominated by comb stamped designs, broad lines of incision, stab and drag patterns, broad wavy lines, and punctates characteristic of the first millennium farming communities. *Theme II* includes motifs derived from wrapped fibre and bead impressions. *Theme III* includes
Table 10.

<table>
<thead>
<tr>
<th>LOCAL POTTERY FROM LOOPHOLED STONE STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size</td>
</tr>
<tr>
<td>rs</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Muczekayawa 263</td>
</tr>
<tr>
<td>Chenguruve (E) 97</td>
</tr>
<tr>
<td>Chenguruve (W) 140</td>
</tr>
</tbody>
</table>

frequency (%)

Muczekayawa 16	1	0	0	3	1	2	77	0	100
Chenguruve (E) 27	0	0	0	4	0	3	64	2	100
Chenguruve (W) 14	0	0	0	5	1	2	77	1	100

Key to vessel parts

rs rim sherd
rns rim/neck
rnh rim/neck/shoulder
rnhb rim/neck/shoulder/body (almost complete vessel)
ns neck sherd
nsh neck/shoulder
sh shoulder
bs body sherd
base base sherd

Table 11.

<table>
<thead>
<tr>
<th>LOCAL POTTERY FROM MUCEKAYAWA HILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape forms correlated with vessel parts, midden</td>
</tr>
<tr>
<td>shape for rs</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1a</td>
</tr>
<tr>
<td>1b</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7a</td>
</tr>
<tr>
<td>7b</td>
</tr>
<tr>
<td>7c</td>
</tr>
<tr>
<td>7d</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>total</td>
</tr>
</tbody>
</table>

Key to vessel parts

rs rim
rns rim/neck
rnsh rim/neck/shoulder
rnh rim/neck/shoulder/body
nsh neck/shoulder
sh shoulder
rnhb rim/neck/shoulder/body
bs body sherd
base base sherd

frequency 82.3% 2.3% 3.3% 1.0% 1.3% 7.0% 1.7% 1.0% 0% 100.0%
Table 12.

<table>
<thead>
<tr>
<th>Shape form</th>
<th>rs</th>
<th>rms</th>
<th>ns</th>
<th>rns</th>
<th>nsh</th>
<th>sh</th>
<th>rnsrb</th>
<th>bs</th>
<th>base</th>
<th>total frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>41</td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.6%</td>
</tr>
<tr>
<td>1b</td>
<td>16</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.8%</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2%</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0%</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9%</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7a</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7b</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7c</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7d</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>total</td>
<td>86</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>101</td>
<td>100%</td>
</tr>
</tbody>
</table>

frequency 85.1% 0% 5% 1% 1% 5% 0% 3% 0% 100%

Key to vessel parts

- rs = rim
- rms = rim/neck
- ns = neck
- rns = rim/neck/shoulder
- nsh = neck/shoulder
- sh = shoulder
- rnsrb = rim/neck/shoulder/body
- bs = body sherd
- base = base sherd

Table 13.

<table>
<thead>
<tr>
<th>Shape form</th>
<th>rs</th>
<th>rms</th>
<th>ns</th>
<th>rns</th>
<th>nsh</th>
<th>sh</th>
<th>rnsrb</th>
<th>bs</th>
<th>base</th>
<th>total frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>56</td>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.3%</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.5%</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4%</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6%</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7a</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7b</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7c</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>7d</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0%</td>
</tr>
<tr>
<td>total</td>
<td>118</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>168</td>
<td>100%</td>
</tr>
</tbody>
</table>

frequency 70.2% 0% 13.1% 0% 7.1% 6% 0% 3% 0.6% 100%

Key to vessel parts

- rs = rim
- rms = rim/neck
- ns = neck
- rns = rim/neck/shoulder
- nsh = neck/shoulder
- sh = shoulder
- rnsrb = rim/neck/shoulder/body
- bs = body sherd
- base = base sherd
Table 14.

Decoration Technique Combinations

<table>
<thead>
<tr>
<th>Motif</th>
<th>I (WF)</th>
<th>II (CST)</th>
<th>III (FLI)</th>
<th>IV (BLI)</th>
<th>V (PUNCT)</th>
<th>VI (APPL)</th>
<th>VII (COMP)</th>
<th>OTHER</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (WF)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.7%</td>
</tr>
<tr>
<td>II (CST)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7.9%</td>
</tr>
<tr>
<td>III (FLI)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.6%</td>
</tr>
<tr>
<td>IV (BLI)</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12.1%</td>
</tr>
<tr>
<td>V (PUNCT)</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.7%</td>
</tr>
<tr>
<td>VI (APPL)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>69.3%</td>
</tr>
<tr>
<td>VII (COMP)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>OTHER</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.7%</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>17</td>
<td>8</td>
<td>43</td>
<td>2</td>
<td>2</td>
<td>109</td>
</tr>
<tr>
<td>Frequency</td>
<td>19.3%</td>
<td>9.2%</td>
<td>7.3%</td>
<td>15.6%</td>
<td>7.3%</td>
<td>39.4%</td>
<td>0.0%</td>
<td>1.8%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Test pits

<table>
<thead>
<tr>
<th>Motif</th>
<th>I (WF)</th>
<th>II (CST)</th>
<th>III (FLI)</th>
<th>IV (BLI)</th>
<th>V (PUNCT)</th>
<th>VI (APPL)</th>
<th>VII (COMP)</th>
<th>OTHER</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (WF)</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>18.3%</td>
</tr>
<tr>
<td>II (CST)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7.2%</td>
</tr>
<tr>
<td>III (FLI)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15.6%</td>
</tr>
<tr>
<td>IV (BLI)</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15.6%</td>
</tr>
<tr>
<td>V (PUNCT)</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.3%</td>
</tr>
<tr>
<td>VI (APPL)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>46.8%</td>
</tr>
<tr>
<td>VII (COMP)</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12.3%</td>
</tr>
<tr>
<td>OTHER</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.4%</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>10</td>
<td>8</td>
<td>17</td>
<td>8</td>
<td>43</td>
<td>2</td>
<td>2</td>
<td>109</td>
</tr>
<tr>
<td>Frequency</td>
<td>19.3%</td>
<td>9.2%</td>
<td>7.3%</td>
<td>15.6%</td>
<td>7.3%</td>
<td>39.4%</td>
<td>0.0%</td>
<td>1.8%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Trench I/1a

<table>
<thead>
<tr>
<th>Motif</th>
<th>I (WF)</th>
<th>II (CST)</th>
<th>III (FLI)</th>
<th>IV (BLI)</th>
<th>V (PUNCT)</th>
<th>VI (APPL)</th>
<th>VII (COMP)</th>
<th>OTHER</th>
<th>Total Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (WF)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.0%</td>
</tr>
<tr>
<td>II (CST)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.1%</td>
</tr>
<tr>
<td>III (FLI)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.2%</td>
</tr>
<tr>
<td>IV (BLI)</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>17.6%</td>
</tr>
<tr>
<td>V (PUNCT)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11.1%</td>
</tr>
<tr>
<td>VI (APPL)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>50.0%</td>
</tr>
<tr>
<td>VII (COMP)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.0%</td>
</tr>
<tr>
<td>OTHER</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.6%</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>12</td>
<td>21</td>
<td>43</td>
<td>59</td>
<td>202</td>
<td>2</td>
<td>2</td>
<td>353</td>
</tr>
<tr>
<td>Frequency</td>
<td>4.0%</td>
<td>3.4%</td>
<td>5.9%</td>
<td>12.2%</td>
<td>16.7%</td>
<td>57.2%</td>
<td>0.0%</td>
<td>0.6%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Key to decoration technique/motif groups

- I(WF): wrapped fibre
- II(CST): comb stamping
- III(FLI): fine line incision
- IV(BLI): broad line incision
- V(PUNCT): punctates
- VI(APPL): applied/painted designs
- VII(COMP): composite designs
- OTHER: other designs, e.g. terraces, bobbins

Comb stamping, incisions, punctates and mouldings in consistent association with painted designs of graphite burnish or red ochre. Theme IV is a miscellany, but with simple to poorly executed motifs (see above). It is difficult to isolate final types solely on the basis of motif.

Assemblage 1

The thick bodied, externally thickened rims and comb stamped pottery recovered at Madzinga, Swart Village, south-eastern foot of Mt Fura and Baranda compares closely with the pottery recovered by Garlake (1969b) at Chitope and Pwiil (pers. comm) in Dande. This pottery either belongs to Gokomere phase II or III, or represents a later manifestation of Dambwa (cf. Phillipson 1974, 1976; Huffman 1989b).

Assemblage 2

Shreds with a bead or wrapped fibre impressions are characteristic of Musengezi sub-tradition pottery (Pikirayi 1987).
<table>
<thead>
<tr>
<th>Decoration Technique Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machekayya Hill, midden</td>
</tr>
<tr>
<td>Motif</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>I(WF)</td>
</tr>
<tr>
<td>II(CST)</td>
</tr>
<tr>
<td>III(FLI)</td>
</tr>
<tr>
<td>IV(BLI)</td>
</tr>
<tr>
<td>V(PUNCT)</td>
</tr>
<tr>
<td>VI(APPL)</td>
</tr>
<tr>
<td>VII(COMP)</td>
</tr>
<tr>
<td>OTHER</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chenguruve Hill (eastern site), midden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motif</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>I(WF)</td>
</tr>
<tr>
<td>II(CST)</td>
</tr>
<tr>
<td>III(FLI)</td>
</tr>
<tr>
<td>IV(BLI)</td>
</tr>
<tr>
<td>V(PUNCT)</td>
</tr>
<tr>
<td>VI(APPL)</td>
</tr>
<tr>
<td>VII(COMP)</td>
</tr>
<tr>
<td>OTHER</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chenguruve Hill (western site), midden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motif</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>I(WF)</td>
</tr>
<tr>
<td>II(CST)</td>
</tr>
<tr>
<td>III(FLI)</td>
</tr>
<tr>
<td>IV(BLI)</td>
</tr>
<tr>
<td>V(PUNCT)</td>
</tr>
<tr>
<td>VI(APPL)</td>
</tr>
<tr>
<td>VII(COMP)</td>
</tr>
<tr>
<td>OTHER</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
</tbody>
</table>

Key to decoration technique/motif groups:
- I(WF): wrapped fibre
- II(CST): comb stamping
- III(FLI): fine line incision
- IV(BLI): broad line incision
- V(PUNCT): punctates
- VI(APPL): applied/painted designs
- VII(COMP): composite designs
- OTHER: other designs, e.g. terraces, bobbles

Assemblage 3
Graphite burnished pottery from open field sites: The majority of the pottery recovered at Baranda is highly graphite burnished. To understand this ware and similar pottery from field sites in the research area, a brief examination of Great Zimbabwe tradition pottery is given here, as some of the shape forms and the decoration motifs on the former site seem to derive from the tradition. A detailed discussion of Great Zimbabwe tradition pottery comes from the site of Great Zimbabwe itself (Caton-Thompson 1931, pp. 53–5; Robinson 1961, pp. 193–226). Pottery from other Great Zimbabwe tradition sites have been described especially from northern Zimbabwe (see Garlake 1973b; Thornycroft 1988; Jaka 1988; Zishiri 1990) but the assemblages from these sites do not depict the full range of variation of the pottery typical of the whole tradition. Some of the collections such as that by Lillian Hodges in the Museum of Human Sciences in Harare remain unpublished but are informative if examined in detail.
Robinson (1961) defined five classes, based on the material excavated from the Hill, the Great Enclosure and No. 1 Ruin at Great Zimbabwe. These classes were correlated with five main chronological periods covering the whole settlement history of the site. Of relevance here is Class 4 pottery, the type associated with the construction of stone walling at Great Zimbabwe. Robinson (1961, pp. 205–6) identified four main vessel forms, and these are: pots with spherical bodies and short necks with beaded rims; pots with spherical or globular bodies with comparatively tall necks, the rims beaded or outwardly flared; spherical pots with very short necks and heavily rolled rims; and spherical pots with necks and rolled rims. Decoration is mainly engraved and incised geometrical designs. Some graphite burnished vessels have panels made from raised ribs. Robinson also recorded polychrome decoration on some vessel forms and suggested that it was a later introduction on the site. He attributed it to the Rozvi (Robinson 1961, p. 216). The periodisation of Great Zimbabwe has now been refined (see Huff-
man & Vogel 1986), and Class 4 pottery is now regarded as an integral part of Periods IVb–IVc, dated 1300–1550 AD. Period IVb, dated 1300 to 1450 AD, is associated with P/Q and R walling, while Period IVc is correlated with Q and R walling and dated to between 1500 and 1550 AD. Period IVa (1250–1300 AD) is characterised by a transitional pottery (Class 3 influenced by Class 4) and is correlated with P and R walling.

Lillian Hodges' assemblage was briefly examined following the discovery of Baranda. The collection represents the whole range of Great Zimbabwe Period 4 (Collett, pers. comm.). It provides a basis for comparison with the Baranda material.

Two 'wares' can be identified in Hodges' collection: the 'blackish brown ware' which is largely graphited and/or has red slip polish, and the 'reddish-brown ware'
which is apparently ungraphited. There is a limited variation in shape forms: there are pots with insloping rims, rounded or tapered, or rounded and slightly out-turned rims; pots with insloping rims, rounded and heavily thickened ('rolled') rims, with some rims having a slight bevel; and pots with tall necks, rounded and slightly out-turned rims. In almost all cases, necks are well defined by an obtuse angle between the rim and the shoulder. Bowl forms are few: these are hemispherical with simple rounded or tapered lips. The vessels are generally well fired brown to reddish brown to deep red. Temper is evenly spread, and the quartz grains used average 1–2 mm across.

The body is of standard thickness, ranging mostly from 6 to 8 mm. Exterior surfaces are well finished; ungraphited vessels have a smooth polish throughout, or reddish brown polish or slip mostly on the rim. Graphite burnishing is found on the rim and lip, and in some vessels, extends into the interior upper part of the rim. Some of the vessels have soot on their exterior.

Most common decoration techniques are incision, notching and moulding. Incised motifs include: alternate
shallow to deep oblique lines of incision on body just below neck, or on raised rib; alternate lines of broad or shallow lines of oblique incision delineated at top or bottom by a deep incised line; short vertical to oblique lines, delineated by continuous horizontal lines of fine to broad incision; and single broad lines of incision on the neck.

Motifs produced by notching are limited to smooth to rough rounded to oval punctates placed between the rim and the shoulder, or on raised ribs. In some cases they are found on the neck, and delineated by an incised line. Moulded motifs include raised ribs which are either plain or decorated with punctates or herringbone pattern, or as has been pointed above, alternate shallow to deep lines of incision. One body sherd had 3 cone shaped structures (bosses) moulded on the vessel surface. Each measured 3 cm in diameter, and 0.5 cm in height, and were placed in a triangular formation in relation to each other.

Class 4 pottery has been found in other Great Zimbabwe tradition sites on the plateau. Local variation within this pottery should be expected, although this has not been quantified in detail. Significant changes in this class of pottery must have occurred during the historical period, and in northern Zimbabwe, ceramic evidence from the site of Baranda supports this suggestion. The site itself poses severe problems of interpretation especially relating to status. Evidently, the site had well established and thriving commercial contacts with the coast at least during the 16th and the 17th centuries. The local pottery shows close affinities with the Great Zimbabwe tradition pottery but with important developments in the assemblage: the numerous presence of bowls and the use of more elaborate decoration motifs.

Baranda is situated in a territory historically known as Mukaranga (Beach 1980, p. 60; Mudenge 1988, pp. xxv). Mukaranga was an integral part of the Mutapa state during the 16th and 17th centuries. The continuance of the Great Zimbabwe tradition in northern Zimbabwe into the historical period invites fresh discussion on the archaeological identity of the state.

The tall necks and slightly rolled rims at Baranda probably derive from Period 4 of the Great Zimbabwe tradi-
tion. Considerably few bowls have been recovered in Great Zimbabwe Period 4 assemblages, but a salient feature at Baranda is the high frequency of these vessel forms (see Table 9). This is probably a later development within the Great Zimbabwe tradition pottery. The motifs in Hodges’ collection compare favourably with decoration groups III–VII for Baranda, with those of the latter probably developing from the former.

Defining a Baranda phase of the Great Zimbabwe tradition

Since Baranda largely dates to the historical period it represents a continuity of the Great Zimbabwe tradition. I forecast the presence of similar sites in the research area. Sites with graphite burnished pottery, and in some cases, associated with imports are arguably part of this cultural complex (see Chapter 4). These sites were probably contemporary although positive information with regard to the dating is required to substantiate this. The research area therefore seems to have a nucleus of a northern facies of the tradition and Baranda probably represents a new cultural phase.

What would Baranda represent in historical terms? What is the historical identity of Baranda? The only known indigenous communities occupying northern part of the Zimbabwe plateau, during the 16th and the 17th centuries, and who had known trading links with western Indian Ocean zone were the Karanga speaking Bantu. These were the basic population of the historical Mutapa state. Subject peoples were found in the periphery of the state, and in the Dande and the lower Zambezi were the non-Karanga Dimba and Tonga. The present state of archaeological evidence seems to point to the long suspected cultural relationship between the Great Zimbabwe tradition and the Mutapa state. The Great Zimbabwe tradition in northern Zimbabwe during the historical period seems to be synonymous with the Mutapa state.

Assemblage 4

The pottery from loopholed stone structures: The pottery recovered from the loopholed stone structures of Muchekayawa and Chenguruvu hills has not been culturally defined before but seems to have some affinities with some assemblages from the Zambezi valley. No comparable pottery has been found further south of the highveld area. Similar pottery has been found in the Zambezi Escarpment by Robinson (1965). He noted the carination on some vessels, and suggested that the trait could have originated from the Early Farming Community tradition of Chinhoyi. He suggested on the basis of bead evidence a 19th century date for the pottery, and attributed it to the Korekore, a Karanga dialect group found in northern Zimbabwe. Vessels with a carinated shoulder have been identified from the Tonga settlement at Behrens in the Kalomo district of Zambia (Fagan et al 1969, pp. 212–4) where they formed 58% (total sample 200) of the assemblage. At the other Tonga settlement at Lion Kop, they constituted 100%. The pottery is mainly decorated with triangular panels of broad line grooves usually filled with oblique bands of comb stamping. It represents a well-developed style, and it is probable that the Chenguruvu and Muchekayawa Hill assemblages constitute an archetype of this pottery. Also found within the Tonga assemblages are shouldered pots with concave rims, defined as shape form 8. At Behrens, this pottery represented 26% of the total ceramic assemblage. Hemispherical bowls are also found in the Tonga assemblage (5.5%), but with a profile markedly different from those identified at Chenguruvu and Muchekayawa hills.

Tonga pottery, or ‘Mali ware’ has been described by Fagan (1963) and Fagan et al (1969, p. 211). It has been dated from the late 18th to the 19th century. Fagan saw no similarity with ‘Kalomo ware, or any other Early Iron Age pottery collections from Zambia’ (Fagan et al 1969, p. 211). Evidence recovered at Sebanzi Hill further north indicates that early Tonga ceramic styles differ from later ones, and Fagan suggests the same for southern Tonga wares.

Phillipson (1976) has identified a number of sites in Eastern Zambia which were used as hiding places during the Ngoni invasions in the 19th century. This period is characterised by considerable population movements and disturbance, and Phillipson (1976, p. 37) indicates that it cannot necessarily be expected that any local pattern in the distribution of ceramic wares, such as may have existed in more settled times, would be reflected at such sites. I may add to this observation that the area populated by the ‘Tonga’ covered a large part of the Zambezi valley, and some variability should be expected in the material culture. The history of some Zambezi valley communities has been complicated by the ‘moving frontier’ of both the Maravi and the Mutapa states, and the Portuguese penetration into the interior. This resulted in minor population movements within the Zambezi valley, which affected adjacent plateau areas.

Some mid-Zambezi valley areas of northern Zimbabwe (Kanyeamba, Dande, Mukumbura etc.) fall into the southern limits of the Luangwa tradition (cf. Phillipson 1974, pp. 7–10). This tradition, according to Phillipson, is practised today and has origins in later Iron Age ceramic styles in the north-eastern, eastern, and south-eastern Zambia including the Zambezi valley and adjacent plateau areas. It is a unified pottery tradition, which shows marked variation over a wide area.

The most common vessel shapes found in the Luangwa tradition are necked pots and shallow bowls. Also found are globular pots, straight sided beakers and gourd-shaped vessels but these are generally rare. Phillipson
observed carination on some vessels in the northern part of Zambia but this trait is said to be rare elsewhere. Necked vessels and some bowls have everted rims with rounded or lightly squared lips (Phillipson 1974, pp. 7–8).

The characteristic decoration motif is the horizontal band of diagonal comb-stamping usually in combination with pendant segmented panels, delineated by light incisions. There are some geographical variations, for example, east of the Luangwa valley, the dominant motif is diagonal or cross-hatched incision. Necked vessels are usually decorated on the shoulder, and sometimes on the neck, while bowls are decorated close to the rim. In addition there are other decorative features within the tradition, for example, the applied bosses, recorded in eastern Zambia and the Zambezi valley (Phillipson 1974, pp. 8–9).

The earliest dates for this tradition come from Chonde in northern Zambia (12th century AD) and at Twickenham Road, Lusaka (early 9th–mid 12th century AD) where the pottery of this tradition succeeds and replaces Chonde and Kapwirimbwe traditions. East of the Luangwa, the tradition replaced the Kamkama group sometime early in the second millennium AD (Phillipson 1974, p. 10).

The Luangwa tradition lacks a clearly defined typological succession, and its facies demand clearer definition. The Zambezi valley has not been discussed in the context of this tradition in detail, and as indicated above, parts of northern Zimbabwe are expected to have the associated pottery. It is not clear how Tonga pottery fits into the Luangwa tradition. The possible relationship between Mahonje tradition and the Zambezi valley ‘Tonga’ communities is discussed below.

South of the Zambezi, some description of Tonga pottery is provided by Goodall (1946) and Schofield (1948). Goodall (1946, pp. 36–49) described some pottery from the north-eastern region of Zimbabwe, in the Mutoko area, populated by the Budya and some Tonga communities. The Budya are believed to have come from the lower Zambezi, mostly from the Barwe area. Beach (1980) has shown that the basic population of Barwe was Tonga, and therefore the Budya are probably related to the former.

Goodall (1948) traced the use of moulding and plastic found on local pottery in northern, central, south-central and eastern Zimbabwe, and demonstrated that such ornamentation on the pottery made by the Tonga and the Budya carried some meaning. Her sample, was based on collections in the then Queen Victoria Memorial Museum, in Harare. She described the salient features that are comparable with the pottery recovered from Chengu-ruve and Muchekayawa hills, and similar sites in the research area. Below are the descriptions of Figs. VII, 1–3 of the sherds (Goodall 1946, pp. 44–5). Figs. VII, 1 & 3 are illustrations of Tonga pottery, while Fig. VII, 2 is an illustration of a bowl made by the Budya of Muto.

Goodall’s Fig. 1 is briefly described as ‘...Spherical bowl (chikate); for vegetables and gravy. 5½ in. over rim, 7 over body, 4½ in. height. Below the rim are two round, slightly raised discs, placed vertically below each other, called homo. The owner of such pot, when questioned, pointed to similar marks tattooed on her cheeks. Others called these designs ‘drawings’ (nyora). At the opposite side of the pot is an incised triangle; between both motives run two bands of cross-hatching-tsengatsenga—a cross stitch. The other vessel (in Fig. 3), also of Tonga manufacture, is '... small bowl for gravy (kalongo). Rim diameter 4½ in., height 3½ in. Two elongated lugs (mazama) are placed near the rim, at opposite sides. A thin band of cross-hatching (tsengatsenga) connects the two motives'. Fig. 2 is a '... Small bowl for cooked food (chirongo). Rim diameter 5¼ in., height 4 in. The rim has an inside bevel. Four elongated lugs (mazama) are placed below rim at equal intervals'.

Goodall also observed large bowls (called gala), decorated with bossed, used for fetching water and for bathing. These bowls are used by the residents of the Mutoko area. On these vessels twin lugs or bosses appear in series of three, four and five round the shoulder (Goodall 1946, p. 43, see Fig. V, 4).

Schofield (1948) also described some of the pottery made by the Tonga. He isolated two areas where the Tonga are found in northern Zimbabwe: Sebungwe, 150 km from Victoria Falls, along the Zambezi, and the north-eastern districts of Zimbabwe where he identified the Tonga living there as ‘... the peoples who owed allegiance to the Monomotapa’. (Schofield 1948, p. 172). Using material in the Queen Victoria Memorial Museum, Schofield identified two groups of Tonga pottery:

One is a black or brown ware, comprising spherical and sub spherical cooking pots, deep bowls about nine inches (23 cm) in diameter, and the little bowls with flattened bases, about 4 ½ inches (12 cm) over the rim, that are used for serving relishes (Schofield 1948, pp. 172–3; see also plate IX, illustrations 7 & 9).

Schofield continues:

These pots have a poor black finish and are decorated with slightly raised bands with herringbone or cross-hatched incisions, discs, representing the tribal facial cicatrization, breast-like projections, and simple geometrical motifs, all placed a little below the rim... The large types of these pots are sometimes provided with fibre carrying-slings. All are used exclusively by women.... The other kind consists of carinated pots from 10 to 18 in. (25–45 cm) in diameter, used for brewing and serving beer and also for storing water, and U-shaped bowls for cooking porridge. This ware is par-
particularly well made, and is so thoroughly burnt that it gives out a clear ring when struck. With the exception of the porridge bowls, most of the pots are decorated directly above the carination with three contiguous bands of cross hatched triangles, covering the whole surface of the neck to a little below the rim ... (Schofield 1948, p. 233)

Schofield also compared this pottery with two vessels made by the Budya of Mutoko, north-eastern Zimbabwe, in the collections of the then Queen Victoria Memorial Museum. The larger reddish brown coloured pot measured 23 cm over the rim and the neck joins the body in a distinct carination. Directly below this are four pairs of bobbles. The neck is decorated with alternating panels of black polish. The other vessel is a small reddish bowl with four elongated projections placed below the rim at equal intervals. The larger of these two pots have obvious affinities with those from Zambia. According to Schofield (1948, p. 171), the small bowl was made by Tonga women. Schofield also described vessels with ‘... well marked carination, the use of incised bands and ... bold chevrons in centralised colours ...’ (Schofield 1948, pp. 170–1; see also plate X, p. 168, illustrations 8 and 12). He remarked that carination on some Shona wares was probably due to Tonga influence (Schofield 1948, p. 171).

It is probable that modern Tonga pottery developed from Mahonje and the latter represents ancestral Tonga and related groups. This point is emphasised in the next chapter. The pottery described by Goodall (1946) and Schofield (1948) fits into shape forms 1 and 2, 4, 8 and 9 defined above. The fabric, temper and surface finish compare closely with those recovered at Muchekayawa and Chenguruve hills. Cross hatched designs, and the use of bosses have also been encountered at the same sites (Figs. 52 a–c; 54 g, m). What Mahonje represents in the historical development of northern Zimbabwe is discussed in more detail in the next chapter where a number of hypotheses are re-examined.

The unidentified pottery from Portuguese earthworks

I now review the ceramic material from the earthworks presented in Chapter 5. A number of hypotheses were proposed to explain the heterogeneous nature of the material. As indicated above the three major typological assemblages identified at Baranda have a chronological significance and probably represent different communities.

Despite the sample size, the decoration motifs from the excavated earthwork at Dambarare show a high frequency of comb stamping (Table 16). The surface material seems to be heterogeneous. The Luanze material is too small to provide meaningful conclusions. The Angwa assemblage (Table 16) shows a predominance of comb stamping over other motifs. In both the Dambarare and Angwa assemblages, rarely was wrapped fibre combined with other techniques. At Baranda, wrapped fibre combinations very rarely with fine lines, while comb stamping is less frequent (Table 14). It usually combines with fine lines. Missing from the earthworks are motifs which largely combine broad lines, punctates, applied and composite designs, found at Baranda.

Dambarare, Luanze, and Rimuka surface contexts lacked material comparable to Assemblage 3 defined at Baranda. The heterogeneity is probably due to the disturbed contexts from which the pottery was recovered. Some of the material is akin to Musongerzi sub-tradition pottery, also recorded at Baranda, and which seem to predate the main occupation. The comb stamping designs need more definition, but would be expected to fit the terminal Early Farming Community assemblage, also defined at Baranda.

Interaction or contact would be inferred if there was a sharing of attributes in the ceramic material, or if there were known cases of such a process, for example the Tonga vessel found by Garlake (1969a) at Dambarare.

Imported pottery

The greatest number of imports came from the site of Baranda. Other sites probably satellite to it had imports but in less quantities. Some loopholed stone structures also had imports but these were few as compared to the site of Baranda. In all cases however the imports had dates roughly coinciding with the historical period in northern Zimbabwe, that is from the 16th to the 19th century.

Imported pottery recovered from northern Zimbabwe includes stoneware and porcelain from the Far East and Persian Gulf, and Iberian earthenwares from Europe. In the absence of information on firing temperature it is impossible to give an accurate definition to the categories of imported pottery available. From a technological point of view, specific temperatures can be used to distinguish one category from another, but there is some variation (Wilding 1991).

Porcelain is sometimes referred to as china or white ware. It has a translucent body and transparent glaze. It is made out of china clay (kaolin). Kaolin contains silica, aluminium, water and anate. It becomes plastic when wet and can be moulded. In the past the kaolin was pounded into powder by the action of the watermill. This action produced clay with a suitable coarse temper for a strong product. Porcellaneous clays fire within a range of 1300–1450 degrees Celsius, while pure kaolin fires at about 1660 degrees. The porcelain is fired indirectly in a kiln to maintain its white colour. The Orient has a long history of porcelain manufacture, and Europe only mastered this technique in the early 18th century (Sassoon 1981, p. 99). It was the Portuguese who introduced porcelain to Europe in the 16th century following their trading contacts with the Far East.
Decoration Technique Combinations

Dambabarare, excavated earthwork

<table>
<thead>
<tr>
<th>Motif</th>
<th>I(WF)</th>
<th>II(CST)</th>
<th>III(FLI)</th>
<th>IV(BLI)</th>
<th>V(PUNCT)</th>
<th>VI(APPL)</th>
<th>VII(COMP)</th>
<th>OTHER</th>
<th>Total</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(WF)</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>66.7%</td>
</tr>
<tr>
<td>II(CST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>III(FLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>16.7%</td>
</tr>
<tr>
<td>IV(BLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>16.7%</td>
</tr>
<tr>
<td>V(PUNCT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VI(APPL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VII(COMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>total</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>100%</td>
</tr>
<tr>
<td>frequency</td>
<td>0%</td>
<td>83.3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>16.7%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Dambabarare, surface collections

<table>
<thead>
<tr>
<th>Motif</th>
<th>I(WF)</th>
<th>II(CST)</th>
<th>III(FLI)</th>
<th>IV(BLI)</th>
<th>V(PUNCT)</th>
<th>VI(APPL)</th>
<th>VII(COMP)</th>
<th>OTHER</th>
<th>Total</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(WF)</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>II(CST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>25%</td>
</tr>
<tr>
<td>III(FLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>IV(BLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>V(PUNCT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VI(APPL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VII(COMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>total</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>100%</td>
</tr>
<tr>
<td>frequency</td>
<td>18.2%</td>
<td>27.3%</td>
<td>9.1%</td>
<td>36.4%</td>
<td>0%</td>
<td>9.1%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Luange, excavations and surface collections

<table>
<thead>
<tr>
<th>Motif</th>
<th>I(WF)</th>
<th>II(CST)</th>
<th>III(FLI)</th>
<th>IV(BLI)</th>
<th>V(PUNCT)</th>
<th>VI(APPL)</th>
<th>VII(COMP)</th>
<th>OTHER</th>
<th>Total</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(WF)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>25%</td>
</tr>
<tr>
<td>II(CST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>III(FLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>IV(BLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>V(PUNCT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VI(APPL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VII(COMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>total</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100%</td>
</tr>
<tr>
<td>frequency</td>
<td>0%</td>
<td>25%</td>
<td>25%</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Angwa earthworks, surface collections

<table>
<thead>
<tr>
<th>Motif</th>
<th>I(WF)</th>
<th>II(CST)</th>
<th>III(FLI)</th>
<th>IV(BLI)</th>
<th>V(PUNCT)</th>
<th>VI(APPL)</th>
<th>VII(COMP)</th>
<th>OTHER</th>
<th>Total</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>I(WF)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>23.1%</td>
</tr>
<tr>
<td>II(CST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>42.9%</td>
</tr>
<tr>
<td>III(FLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>15.4%</td>
</tr>
<tr>
<td>IV(BLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>15.4%</td>
</tr>
<tr>
<td>V(PUNCT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>10.2%</td>
</tr>
<tr>
<td>VI(APPL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>VII(COMP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>total</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>100%</td>
</tr>
<tr>
<td>frequency</td>
<td>23.1%</td>
<td>53.8%</td>
<td>7.7%</td>
<td>0%</td>
<td>15.4%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Key to decoration technique/motif groups

- I(WF) wrapped fibre
- II(CST) comb stamping
- III(FLI) fine line incision
- IV(BLI) broad line incision
- V(PUNCT) punctates
- VI(APPL) applied/painted designs
- VII(COMP) composite designs
Stoneware is a hard dense material made from siliceous clay or a mixture of clay and sand. The grey body is frequently glazed with monochrome black or green salt glazes. Stonewares in general are fired at about 1220–1280 degrees Celsius, while Far Eastern stonewares are fired at 1250–1300 degrees (Wilding 1991). The term near-stoneware has been applied by some scholars to refer to ware which is transitional between earthenware and stoneware (Lindahl 1986).

The term earthenware covers all wares made from a single natural clay or from a mixture of clay and other mineral substances, and fired from 800 degrees Celsius or lower to about 1200 degrees. By definition all local pottery would fit into this category. However the wares often referred to under this term are European and these usually include Delft (which is tin glazed), Faience (tin-lead glazed), Majolica and Terracotta (earthenware made from hard reddish brown clay. It is porous and is often unglazed). Faience was first made in Portugal in the 16th century as an imitation of Chinese porcelain and became common during the 17th century with Lisbon and Coimbra being the manufacturing centres (Sassoon 1981, p. 114). Delft was an important manufacturing centre in Holland, producing blue and white earthenware during the late 17th century. Pottery from Portugal and Spain is normally referred to here as Iberian.

If we are to obtain meaningful chronological and other data on the nature and level of contact taking place, it is necessary to understand the context in which the material was recovered. There is need to look beyond the Western Indian Ocean zone (see for example Chaudhuri 1985) to see whether the patterns of production and distribution in the Far East, the Gulf and even Europe reflect in an explicable way on the assemblages found in northern Zimbabwe.

Interaction or contact takes place within and between societies at different scales which can be shown to be interconnected. Interaction or contact involves the flow of information and goods through a distance over a period of time. At this stage the level of interaction we are dealing with is inter regional or global in character.

A study of an assemblage within a chronological and spatial framework does not necessarily end with quantification, but the positive identification of the material must also be made. With respect to the wares a detailed registration of some of the most important attributes was done. The examination of the material involves physical and historical aspects of ware type and shape, morphology, manufacture, surface treatment, colour, glaze characteristics, a technological assessment of hardnless and temper, decoration techniques, designs and motifs to produce detailed data on origin and dates of manufacture or circulation of the material.

Pottery from the Far East (Plates 28, 29 30, 31, 32 and 33): Of all the imported wares, Chinese pottery has received most attention. Particular emphasis has been given to the development of blue and white porcelain from the second half of the first millennium to the 19th century or the last years of dynastic rule in China in the 20th century. Authorities in this field include among many others, Jenyns (1951, 1953); Gray (1952); Pope (1956); the South East Asian Ceramic Society (e.g. 1971) and the Oriental Society of Hong Kong (e.g. 1975, 1977).

Since most of the Chinese wares found their way to Europe, the general approach has been to study the collections in museum exhibits. Little attention has been paid to the places where these wares were made (cf. Heathcote 1921) or the network involved in distributing them all over the world (Wilding 1991). The other problem emanating from the study of collections in exhibits is that the range of variation is known better in terms of porcelain than either stoneware or earthenware. Archaeological data from China has been generally lacking but the picture has now changed following some excavations within the past decade (Wilding, pers. comm.).

Archaeological data in eastern Africa has produced a wide range of wares of Near Eastern and Chinese origin to demonstrate a wider range beyond porcelain. The data available confirm a long traditional link between Eastern Africa and the eastern and northern zones of the Indian Ocean. The bulk of the Chinese blue and white pottery in most areas of Eastern Africa has been found on surface and upper occupation levels of sites, post dating the coming of the Portuguese:

It seems to be the Portuguese, and later the Dutch who initiated the bulk transportation of Chinese wares to the Indian Ocean and the major part of this material was blue and white ware. It was very common all over the Indian Ocean coast world, wherever Portuguese ships went. In Goa it was so cheap that it equipped the Royal Hospital. It is proper to make a direct association between the presence of large quantities of blue and white vessels and Portuguese trading influence. (Wilding nd, p. 321)

Wilding's statement is largely correct within the context of the data recovered so far from northern Zimbabwe. There are single celadon sherds from the Great Zimbabwe tradition stone structures of Tere and Zvongombwe. No earlier types of porcelain have been recovered to put northern Zimbabwe firmly on the Indian Ocean commercial network in the 14th century or earlier. So where was the ceramic route?

Sersterens (1985) has defined a route used by the Chinese between the 9th and the 14th century AD. The route supplied a vast commercial network linking China with South-east Asia, India, the Near East and eastern Africa.
Sersterens did not define the route for the period after the 14th century:

The marine network through which they were distributed was never completely broken up, but the restrictions imposed by the Chinese government at the end of the 14th century and the arrival of the Portuguese in the Indian Ocean from 1498 affected its organisation globally and definitely. (p. 284)

Wilding (nd, pp. 234–388) argues that the network touching Africa was linked to the Gulf. He shows that during the 9th and 10th centuries AD porcelain was being exported from China, together with silk, semi-precious metals and stonewares. Most exports found their way to the Gulf. By the end of the 14th century there was a rise in the quantity of wares exported from China with Kalaeh on the Malay Peninsula serving as a transhipment point (p. 235). East Africa seems to have been a passive recipient of Far Eastern wares at this stage (p. 236). The port of Siraf in the Gulf is known to have been a leading entrepot in the network of maritime trade which brought to the Middle East merchandise from India, China, South-east Asia, Eastern Africa and the Red Sea during the 9th and 10th centuries AD and the merchants from there are known to have been ‘notoriously rich’ (Whichhouse 1973, p. 242).

Thus before the 15th century Far Eastern material came to Eastern Africa via the Gulf. When the Portuguese came to East Africa they altered this route as well as the traditional Indian Ocean trade network (Wilding 1989). Far eastern pottery now came via Goa in India. However they were not able to stop the flow of wares from the Gulf. During the 15th and 16th centuries there is a rise in wares coming from both the Far East and the Gulf (Wilding nd, p. 237) which shows that the Portuguese were unable to impose a monopoly:

What the Portuguese failed to do was taking out trade from the Arabs, but what they succeeded in doing was putting India in a firmer position as far as contacts with the Eastern African trade were concerned (sic). (Wilding nd, p. 238)

Evidence of earlier Chinese wares has been considered to be synonymous with the silk trade for the latter was a highly prized commodity in constant demand all over the Indian Ocean zone. Chinese ceramics, especially porcelain, are considered to be a visible, archaeological manifestation of this transoceanic enterprise, which also included incense, spices, medicinal plants, aromatics and precious stones (Sersterens 1985, p. 284). Cloth has been identified in northern Zimbabwe archaeological contexts but in limited quantities and not as silk (Garlake 1968; Huffman 1971b). Cloth as a highly valued commodity is mentioned in Portuguese documents referring to the Mutapa state. It is safe to assume that the Portuguese and even the Dutch largely included silk in their trade in the India Ocean in addition to ceramics and beads. The Dutch for example, contracted the Chinese to make blue and white porcelain specifically for the European market.

The term ‘Far Eastern’ has largely been used to refer to wares coming from China, but there is evidence to show that the pottery also came from Japan, Burma, Thailand, Siam and other territories of south Asia where stonewares have been found. Unless specifically known to have originated from China the stonewares examined in this work are referred to simply as ‘Far Eastern’.

It is possible to date some sherds of porcelain to the exact dynasty and sometimes to identify the kiln from which they came. Several Chinese kiln sites linked with in the Indian Ocean commercial network have been located (Heatherington 1921; Sersterens 1985) and the site of Jingdezhen with its kaolin hills and dumping grounds is very important in the Ming period (1367–1644) (Addis 1977, p. 2). Such specific identification has not been possible with the assemblages this work is analysing due to fragmentation. It has been shown (Sassoon 1975) that although there is a continuity of motifs and motif combinations since the beginning of the manufacture and export of Far Eastern wares, some pattern elements can be traced at least to dynasty level. Thus Ming Period (1367–1644) wares are decorated in a different way from Yuan or earlier (cf. Virgin 1964), but there is not a clear cut distinction between Ming and Ching Period (1644–1912) pottery.

The use of dynastic markers as chronological tools has been criticised for bearing little relation to technological changes (Wilding nd, p. 239, dos Santos 1968). Despite this limitation they should still be accepted as they provide useful short-hand markers of time.

It is not easy to describe some of the categories of imports. According to Virgin (1964) there are many descriptive terms one can use on a design, and the themes attached are wide ranging. Design/themes change/develop over time and some are specific to certain dynasties.

The Gulf (Persia, etc) (Plates 34, 35, and 37): Islamic and other wares from the Gulf have not been given as much attention as Chinese ones. On the basis of what is known at present, it is difficult to distinguish early from later Islamic pottery. Most of the studies are based on private collections (Lane 1947; Geza 1973). Far less is known about the pottery of the later Islamic period, perhaps partly due to lack of interest in later wares, but also partly due to the lack of adequate excavated data.

Trade in ceramics between the Far East and the Gulf is unclear during the Mongol domination. In fact from the 11th century the Gulf lost the prominence it had experienced since the Sassanid period starting in the 9th century AD. Trade with China at this time seems to have
been channelled to India and the Red Sea (Aden), as far as Alexandria and Fustat in Egypt. From the 12th to the 14th century China created strong trading links with India, and not the Gulf. This was a result of the introduction of the ocean-going junk which was proportionally larger in terms of size and tonnage, and carried more people than Indian and other ships from the Gulf. It was in the 14th or 15th century that the people from the Gulf began to import improved varieties of blue and white porcelain from China.

Some Near Eastern wares are found in Eastern Africa especially on sites along the coast, but also in the hinterland parts of the Zimbabwe plateau (Great Zimbabwe) and the sites in the Limpopo Valley (Mapungubwe and others).

Not many Near Eastern wares were brought to Eastern Africa by the Portuguese as compared with far eastern ones. This is so because they did not manage to control the trade coming from the Gulf and they did not establish a long presence there. This picture is largely reflected in the relatively low frequency of Islamic wares found in northern Zimbabwe. The alternative explanation would be the decline that had taken place in the 16th century and parts of the 17th century, (Lane 1956, p. 68) leading to the dispersal of potters from the Gulf area to places like Turkey (Jsnik), Tunisia and Egypt (Wilding, pers. comm.). Some revival in the field of ceramics took place during the rule of the Safavids in the early 16th century (Geza 1973, pp. 134–43). Chinese influence remained strong throughout the whole period. From the middle or
<table>
<thead>
<tr>
<th>Test pits</th>
<th>stoneware</th>
<th>earthenware</th>
<th>porcelain</th>
<th>glassware</th>
<th>total frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15th century or earlier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>15th century or later</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>17.7%</td>
</tr>
<tr>
<td>16th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16th-17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16th-early 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16th-late 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16th or 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th or early 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th or late 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th-early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th-late 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>17th or 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 17th-early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 17th or early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>18th or 19th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 19th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>undated</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>82.1%</td>
</tr>
<tr>
<td>total</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trench 1/1a</th>
<th>stoneware</th>
<th>earthenware</th>
<th>porcelain</th>
<th>glassware</th>
<th>total frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15th century or earlier</td>
<td>6</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>20.3%</td>
</tr>
<tr>
<td>15th century or later</td>
<td>24</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>30.5%</td>
</tr>
<tr>
<td>16th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16th-17th century</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1.7%</td>
</tr>
<tr>
<td>16th-early 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>16th-late 17th century</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.8%</td>
</tr>
<tr>
<td>16th or 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th century</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.8%</td>
</tr>
<tr>
<td>late 16th or early 17th</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th or late 17th</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th-early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 16th-late 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>17th or 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 17th-early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 17th or early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>18th or 19th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>late 19th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>undated</td>
<td>11</td>
<td>22</td>
<td>38</td>
<td>13</td>
<td>71.2%</td>
</tr>
<tr>
<td>total</td>
<td>18</td>
<td>40</td>
<td>46</td>
<td>14</td>
<td>100%</td>
</tr>
</tbody>
</table>

late 18th century onwards European influence became prevalent. Cheap European faience and porcelain reached the Near East in large quantities and eventually caused a decline of Islamic pottery.

The European wares (Plate 36): Before the 18th century, few wares from Europe were traded directly to Africa. It was the Portuguese who introduced Far Eastern porcelain to Europe in the 16th century and by the 17th, it became common. The Dutch became involved in the porcelain trade after removing the Portuguese, and flooded the markets in Europe (cf. Volker 1954). Dutch wares could have been marketed on the East African coast had they successfully challenged Portuguese authority there which was evidently shaky. Copies of Chinese blue and white were then made in Europe and famous are the Faience, first made in Portugal close to the end of the 16th century, and Delft from Holland. Both types are earthenwares.

Also mentioned in this work are the red lead glazed earthenwares (Plate 36). These are termed Iberian as the red clay from which they were made is found in Portugal and Spain. This pottery has also been found in India, although sources of red clay are not known from there.

Baranda

A total of 550 sherd of imported ceramics and glassware were analysed. A representative series was taken to The Urban Origins Regional Centre in Mombasa for comparative examination; Dr Richard Wilding also examined the material in detail and Professor Henry Wright looked at the wares from slides. The material was highly fragmentated and this limited the identification of the wares by ori-
Table 18.

<table>
<thead>
<tr>
<th>Period</th>
<th>Stoneware</th>
<th>Earthenware</th>
<th>Porcelain</th>
<th>Glassware</th>
<th>Total Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15th century or earlier</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>15th century or later</td>
<td>25</td>
<td>5</td>
<td>15</td>
<td>0</td>
<td>8.2%</td>
</tr>
<tr>
<td>16th century</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1.7%</td>
</tr>
<tr>
<td>16th-17th century</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>5.1%</td>
</tr>
<tr>
<td>16th or 17th century</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>5.1%</td>
</tr>
<tr>
<td>17th century</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>5.1%</td>
</tr>
<tr>
<td>17th or 18th century</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>5.1%</td>
</tr>
<tr>
<td>18th century</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>5.1%</td>
</tr>
<tr>
<td>18th or 19th century</td>
<td>14</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>5.1%</td>
</tr>
<tr>
<td>Undated</td>
<td>17</td>
<td>59</td>
<td>83</td>
<td>13</td>
<td>172</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>73</td>
<td>160</td>
<td>14</td>
<td>297</td>
</tr>
</tbody>
</table>

Controlled surface collections

<table>
<thead>
<tr>
<th>Period</th>
<th>Stoneware</th>
<th>Earthenware</th>
<th>Porcelain</th>
<th>Glassware</th>
<th>Total Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15th century or earlier</td>
<td>24</td>
<td>13</td>
<td>0</td>
<td>37</td>
<td>38.5%</td>
</tr>
<tr>
<td>15th century or later</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>16th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>16th-17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>16th-early 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>16th-late 17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Late 16th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Late 16th or early 17th</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Late 16th or late 17th</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Late 16th-early 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Late 16th-late 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>17th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>17th or 18th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>17th or 19th century</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Undated</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

In, for example, 258 (or 46.9%) of the total analytical sample of 550 sherds had a surface area of less than 3 square centimetres. The average sherd size was 5.8 square centimetres.

Of the imported wares, 66.9% (mostly blue and white porcelain) came from China or the Far East, 18.7% came from the Persian Gulf area, 8.2% came from Europe (Iberian peninsula), 2.5% came from either Europe or the Gulf, while the remainder (5.6%) could not be positively sourced (Tables 17 and 18).

Far Eastern stoneware, some earthenwares from the Gulf such as Islamic monochromes and Gudulia, and European lead glazed earthenwares are difficult to date. This is largely because the wares were manufactured over a number of centuries, reducing the chronological precision attached to them. A broad date, covering at least four centuries (15th–19th century) has been suggested for most of the stonewares recovered at Baranda (Wilding, pers. comm.). The majority are probably Chinese stonewares of the 16th to 17th century. Chinese blue and white porcelain was easier to date, and most of the Baranda material was probably manufactured in the 16th and 17th centuries (Table 17, Plate 37).

Imported pottery was recovered from some test pits and Trench I/la. The stratigraphic composition of the site has either been thoroughly disturbed by post site formation processes or was too ill defined to give a clear picture of the stage at which imports started arriving at the site. The deepest pit (60 cm) from which imports were recovered was XXIX but had no clear visible stratigraphy. A closer examination of the whole ceramic assemblage both local and imported showed that it was probably a mixed
assemblage, belonging to at least three traditions. Trench I/1a did not provide any sealed context or clearly stratified deposit: most imports were found incorporated in the daga/clay feature covering more than two thirds of the exposed surface. However no imported wares were found on the original surface exposed to the eastern side of the trench, more than 50 cm deep. The initial occupation of the site certainly pre-dates the coming of imports. The very low frequency of Musengezi sherds compared to the imports, and the lack of any apparent association between them rules out any connection. There remains the question of association between imports and Great Zimbabwe tradition pottery, as it is difficult to tell when this relationship was established.

Dates from other sites with imported pottery
Sherds of Chinese blue and white porcelain from Farm 17 date to the 17th century (Wilding, pers. comm.). They were associated with sherds of graphite burnished pottery, probably of the Great Zimbabwe tradition. Two sherds of porcelain from Gweta Farm (Chesa) have been identified as of European origin, and dated to the late 19th century (Wilding, pers. comm.).

The stone enclosure at Beryl Rose Mine in the lower Gweta river valley had some fragments of Chinese blue and white porcelain dating to the 16th or 17th century, and green glass fragments probably of the same date. A few pieces of Chinese blue and white porcelain have either been surface collected or excavated from the middens at Chengurwe Hill, less than 1 km to the south-west of Baranda. One finely made, good quality rim sherd with floral or tendrill designs from the western site has been dated to the early 16th century, while another sherd with floral designs from the eastern site has been dated to the later 16th century.

7.2.2. Glassware and beads
Fragmented glass pieces were recovered at Baranda (Plate 38). The colours range from shades of translucent green to white and transparent colourless. The green variety has been dated to the early 17th century, while white glass is thought to be of late 17th century (Chittick 1974). The value of glass as a dating tool is no longer accepted given the technological processes some of the glass went through before it was exported. In the absence of other imports it can not be used reliably in the dating of archaeological sites.

Beads have for millennia been the medium of exchange in barter and the standard units of value in market systems (Sher 1987). They often mirror the culture of which they are a part that they tell us a great deal about the social, political, economic and religious lives of the people who have made and worn them (Sher 1987, p. 17).

There are many perspectives in bead studies but the present work is concerned with the cultural and historical view points in order to understand the chronological and spatial pattern of bead trade in Eastern Africa. Nearly 20,000 well preserved glass beads were recovered from Baranda.

Beads have been traded in the Indian Ocean Zone for the past 2000 years. Swahili merchants carried the bead trade along the Western Indian Ocean coast as far as Somalia and the hinterland as far as the Zimbabwe plateau before the coming of the Portuguese, and managed to maintain the trade for another century even when the Portuguese tried to eliminate them from the lucrative commerce. The beads recovered from northern Zimbabwe assemblages have been analysed in the light of this background.

The value of beads as dating evidence has been treated with caution. It is not possible to get an accurate historical date, but only a broad estimate (Davison 1972; Garlake 1968; Decorse 1989, pp. 41–53). Bead manufacturing centres in the Indian Ocean zone have not been documented like the major ceramic manufacturing centres in the Far East and the Gulf area, thus the production centres are largely unknown. India seems to be the exception. Although it is possible to determine the technology employed in the manufacture of the beads, it is known that the methods of manufacture of certain bead types has not changed for centuries (Wilding, pers. comm).

Sher (1987, pp. 181–99) has shown the importance of India in the Indian Ocean trade network. Documentation of archaeological sites involved in bead making or distribution centres has been made possible by a natural resource inventory around the site territories, and these include gold, glass, ivory, wood, onyx, carnelian, silver, agate, shells, pearls, beryl etc. The most important sites involved in the bead trade were Chanhu-daro, Lothal,
Cambay, Broach, Limodra, Poona, Brahamapuri, Goa, Arikamedu, Nagapattom just to mention a few (see also an account by J. B. Lavanja of the wreck of the St. Albert, in Theal 1898–1903 (vol. 2), p. 303, 1593 who states that beads of ‘clay’ of all colours were made in India at Nagapattom and exported to Mozambique. Particular mention is of red beads worn in the ears of the Africans). The network of trade is the same as that involving ceramic wares. The beads from India are sometimes referred to as ‘trade-wind beads’.

Baranda

The quantification of glass beads found at Baranda follows Mapira’s (1991) and Abungu’s (1991) modified version of Karklins (1985). Although this work aims at addressing questions which are chronological in character, glass beads can be used to address a broader range of problems such as raw material used, the possible source of the beads and hence the bead trade, use of the beads on the site they were found (intra-site distributions, densities, etc), the disposal of the beads, loss and abandonment being the most likely events to have happened on the site in question.

<table>
<thead>
<tr>
<th>QUANTIFICATION OF BEADS BY COLOUR/TYPe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baranda</td>
</tr>
<tr>
<td>sample size</td>
</tr>
<tr>
<td>colour</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>surface</td>
</tr>
<tr>
<td>test-pits</td>
</tr>
<tr>
<td>trench l/1a</td>
</tr>
<tr>
<td>total</td>
</tr>
<tr>
<td>Indian Red 603</td>
</tr>
<tr>
<td>green 47</td>
</tr>
<tr>
<td>yellow 29</td>
</tr>
<tr>
<td>dark blue 129</td>
</tr>
<tr>
<td>light blue 59</td>
</tr>
<tr>
<td>black 6</td>
</tr>
<tr>
<td>whitish-orange 0</td>
</tr>
<tr>
<td>white 2</td>
</tr>
<tr>
<td>orange 0</td>
</tr>
<tr>
<td>Indian Red on green 0</td>
</tr>
<tr>
<td>purple 0</td>
</tr>
<tr>
<td>other, unidentified 0</td>
</tr>
<tr>
<td>copper 3</td>
</tr>
<tr>
<td>Total 878</td>
</tr>
<tr>
<td>surface</td>
</tr>
<tr>
<td>test-pits</td>
</tr>
<tr>
<td>trench l/1a</td>
</tr>
<tr>
<td>% total</td>
</tr>
<tr>
<td>Indian Red 68.7</td>
</tr>
<tr>
<td>green 5.4</td>
</tr>
<tr>
<td>yellow 3.3</td>
</tr>
<tr>
<td>dark blue 14.7</td>
</tr>
<tr>
<td>light blue 6.7</td>
</tr>
<tr>
<td>black 0.7</td>
</tr>
<tr>
<td>whitish-orange 0</td>
</tr>
<tr>
<td>white 0.2</td>
</tr>
<tr>
<td>orange 0</td>
</tr>
<tr>
<td>Indian Red on green 0</td>
</tr>
<tr>
<td>purple 0</td>
</tr>
<tr>
<td>other, unidentified 0</td>
</tr>
<tr>
<td>copper 0.3</td>
</tr>
<tr>
<td>Total 100</td>
</tr>
</tbody>
</table>

The classification system used here covers bead structure, manufacturing technique, shape, decoration, dainpenity, lustre, size, proportion, condition and colour. This was used as a database which allowed for the various attributes/attribute states to be sorted and grouped. The shape, colour and size categories were used as a basis for identification of the beads.

Simple oblates dominate the glass beads recovered at Baranda. In addition there are folded copper beads. Shell beads were not recovered. The dominant colours are Indian red, dark blue, light blue, green and yellow. Less dominant colours are white, orange, purple and Indian red on green (see Table 19). In addition there were cooper beads. Copper beads were formed by folding a short length of wire over a thin metal core leaving the end buts jointed.

All beads were in an excellent condition of preservation, and had no patina. Five size categories were employed: very small, small, medium, large and very large. The majority of the beads were in small and medium size category (see Table 20). The same trend was observed on both the excavated and surface material.

Nearly 20,000 glass beads were recovered at Baranda, and this assemblage is the largest so far in northern Zim-
Table 20.

<table>
<thead>
<tr>
<th>QUANTIFICATION OF BEADS BY SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baranda</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>size</th>
<th>v/small</th>
<th>small</th>
<th>medium</th>
<th>large</th>
<th>v/large</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>context</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>surface</td>
<td>16</td>
<td>793</td>
<td>75</td>
<td>3</td>
<td>0</td>
<td>887</td>
</tr>
<tr>
<td>test pits</td>
<td>2</td>
<td>1488</td>
<td>114</td>
<td>0</td>
<td>0</td>
<td>1604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frequency</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>surface</td>
<td>1.8%</td>
<td>89.4%</td>
<td>8.5%</td>
<td>0.3%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>test pits</td>
<td>0.1%</td>
<td>92.8%</td>
<td>7.1%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

NB: beads from Trench 1/1a not categorized by size

Key to size categories:
- very small = diameter <2 mm
- small = diameter 2-4 mm
- medium = diameter 4-6 mm
- large = diameter 6-10 mm
- very large = diameter >10 mm

Table 21.

<table>
<thead>
<tr>
<th>QUANTIFICATION OF BEADS BY COLOUR/TYPEx</th>
<th>looped stone structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size</td>
<td>Muchekoyawa Hill</td>
</tr>
<tr>
<td>red</td>
<td>4</td>
</tr>
<tr>
<td>red on green</td>
<td>27</td>
</tr>
<tr>
<td>red on white</td>
<td>60</td>
</tr>
<tr>
<td>Indian red</td>
<td>0</td>
</tr>
<tr>
<td>green</td>
<td>3</td>
</tr>
<tr>
<td>light blue</td>
<td>2</td>
</tr>
<tr>
<td>dark blue</td>
<td>3</td>
</tr>
<tr>
<td>black</td>
<td>0</td>
</tr>
<tr>
<td>white</td>
<td>148</td>
</tr>
<tr>
<td>patinated</td>
<td>8</td>
</tr>
<tr>
<td>copper</td>
<td>6</td>
</tr>
<tr>
<td>shell</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>283</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frequency (%)</th>
<th>Muchekoyawa Hill</th>
<th>Chenguruve Hill (E)</th>
<th>Chenguruve Hill (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>1.4</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>red on green</td>
<td>16.6</td>
<td>46.0</td>
<td>11.0</td>
</tr>
<tr>
<td>red on white</td>
<td>21.2</td>
<td>46.0</td>
<td>40.2</td>
</tr>
<tr>
<td>Indian red</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>green</td>
<td>1.1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>light blue</td>
<td>2.5</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>dark blue</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>black</td>
<td>0.0</td>
<td>2.0</td>
<td>31.1</td>
</tr>
<tr>
<td>white</td>
<td>52.3</td>
<td>26.8</td>
<td>31.1</td>
</tr>
<tr>
<td>patinated</td>
<td>2.8</td>
<td>4.6</td>
<td>5.6</td>
</tr>
<tr>
<td>copper</td>
<td>2.1</td>
<td>12.1</td>
<td>5.4</td>
</tr>
<tr>
<td>shell</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

babwe, and is only comparable to Caton-Thompson’s (1931) assemblage from Great Zimbabwes and Garlake’s (1969a) excavated assemblage from Dambararare. However the range of glass beads available on the site is limited, and does not match that recovered by Garlake at Dambararare (Fig. 60). Garlake identified 4 broad groups of beads at Dambararare. These are shell discs (Group 1) (Garlake 1969a, p. 43), reheated glass canes: opaque oblates
and cylinders (dull coloured, and irregular shapes) (Group 2); reheated glass canes: small oblates, transparent or translucent in colour, smaller and much more regular in shape than the beads of group 2, and patinated due to decay (Group 3); and a miscellaneous group including beads of clear glass, moulded to form hexagonal prisms, tabular heart shaped beads, tiny transparent plums, coral spheres and cylinders and ivory spheres and cylinders (Group 4). For the various bead sizes, the reader is referred to Garlake (1969a, pp. 41–2).

The glass beads recovered at Baranda match Garlake’s Dambarare Group 2. Dambarare group 2 has been identified as the normal 17th century Portuguese trade beads (Garlake 1969a, p. 41, 44), and these beads are identical to the ones recovered at Luanze by Garlake (1967) and compare closely with some Great Zimbabwe period IV assemblages. Indian reds are by far the most common. They have also been recorded in some Harare and Musengezi sub-tradition sites (Mupira 1991, pp. 20–2).

Muchekayawa and Chenguruve Hills

The beads recovered from loopholed stone structures at Chenguruve and Muchekayawa hills differ significantly in terms of range and frequency. Table 22 shows the sample size, and the quantification by size and colour. Simple white beads dominate the assemblages of all the enclosures excavated, but also important are compound beads (red-on-white and red-on-green beads) (Figs. 60, 61). Copper beads vary significantly from site to site. Given the midden environment in which the beads were recovered 2–5% of the beads show a patina. One percent of the beads recovered at Chenguruve Hill (western site) were made from shell (Fig. 60). The light blue, dark blue, green, Indian red and black oblates match those recovered at Baranda but they do not exceed 2% on any of the middens excavated (Fig. 60).

Fig. 60. Comparing bead colour/type, Baranda and loopholed stone structures.
7.3 Stone architecture

7.3.1 Overview

This section evaluates the architectural setting of the stone structures in the research area. Stone buildings on the Zimbabwe plateau have been classified on the basis of architecture (Whitty 1957, 1961; Summers 1971, Garlake 1970a, 1973b). Great Zimbabwe tradition stone structures are the most widely studied. The main architectural divisions probably represent different traditions of building. Whitty (1957, 1957–61), Whitty & Summers (1961) and Robinson et al (1961) have demonstrated that all the salient features of an architectural style which was established in most parts of the Zimbabwe plateau since the 15th century were to be found at Great Zimbabwe.

In the early 1950s Axelson (1956) visited the area east of Mt Fura and gave a detailed description of five loopholed stone structures he encountered placing emphasis on number, location, and placement of loopholes. Mathew (nd) made a more detailed analysis in the early 1960s. Whitty (1959) also classified some of the stone structures in Mashonaland.

A check list of surface and other features on or associated with stone built monuments in the research area was devised. This was modified from a list made at the Morabasa Specialist Workshop in August 1988 (Sinclair 1988) designed to record data on the East African coastal sites. It investigated general locational data, wall typology, architectural details of wall style and associated architectural developments such as the use of dressed or undressed blocks, abutting, form of entrance, wall dimensions, wall foundation, wall sequences, evidence of human occupation, enclosure layout, ornamentation, possible uses of walling, dating (typology, oral traditions, written sources, imported material or local ceramics) and the environmental context.

7.3.2 Criteria for fortification

European notions of fortification were used during the early 20th century to interpret the structures at Great Zimbabwe and similar sites on the Zimbabwe plateau (Bent 1896; Hall 1905, 1909; Hall & Neal 1902; Randall MacIver 1906). loopholed stone structures in the research area can be interpreted as fortifications using the following criteria:

1. Written or oral accounts of raiding or mobile armies in the area;
2. Location on hilltop positions which are difficult of access;
3. Entrances showing evidence for defensive works;
4. Use of cliffs as natural defences;
5. The presence and number of loopholes in relation to the location of the site and their possible functions.

These results are integrated with the discussions in Chapters 8 and 9.

7.3.3 Stone and house architecture

The data presented in this section are largely based on detailed work carried at Muchekayawa and Chenguruve hills, but other relevant data recorded elsewhere in the research area are also included to present a more com-
comprehensive picture. A functional perspective is taken in line with the archaeological evidence available.

The enclosures at Muchekayawa and Chenguruve hills have been described in Chapter 5. The stone walls are essentially blocking or screening in effect, with boulders serving as natural extensions of the walls. Where boulders are not massive enough to permit effective screening, a running wall is built on top of them to give additional height. Sometimes there is no walling adjacent to approaches which are difficult of access. The number of loopholes per site is dependent on the size of the enclosure and its accessibility in relation to the terrain.

Houses are built mostly inside the enclosures, but some are found on the outside. They are raised on rock or earth foundation. Most of the houses do not exceed a diameter of 2 m (see Plate 24, Figs. 13, 14). Poles were inserted vertically into a daga foundation while it was still wet. The poles were then plastered on the inside (Fig. 62). The plastered surface is rough when compared to daga lumps from Baranda which had a smooth surface (Fig. 63). Evi-

Fig. 62. Daga lumps from Chenguruve Hill (eastern site): a-b from mound M1; c-d from M2, e-f from M3, g from M4 and h-i from M5.

Fig. 63. Daga lumps from Baranda, Trench 1/1a.
dence of the nature of roofing has not yet been found. The number of houses varies from one enclosure to another, and does not always correspond to the size of the enclosure. The small eastern site on Chenguruve Hill contained more house structures than the much larger enclosure at Muchekayawa Hill (see Figs. 8 and 13). The meaning of this is not immediately clear but perhaps we should view some of these enclosures as functioning in groups rather than singly because they probably served complementary functions.

Some enclosures had vertical stone slabs arranged in 3 or 4 rows of 4 or 5 slabs each. None of this was found at Muchekayawa or Chenguruve, but there are examples on the western ridge or massif of Mt Fura (Plates 11, 12 and 13) and in Mahonje mountain in the Mufurudzi safari area. These stone alignments are associated with pole impressed daga mounds. The top end of each vertical stone slab has a semi-circular gutter which suggests that they were probably used to support a pole platform on which a daga structure was constructed (Plate 14). Modern examples of such constructions function as grain bins, with the platform protecting the grain from termites and ground moisture.

7.3.4 Great Zimbabwe tradition stone enclosures

Known sites are located in granite environments. This landform is limited in terms of area, and the choice of sites apparently involved a process of careful elimination and selection. The Goora area to the extreme south-west has not been surveyed in detail and more sites of this nature are expected there. Chizinga granite to the extreme south exfoliates poorly and is certainly unsuitable for building purposes. The sites are easily accessible, and all are found close to present day stream sources or vleis. The structures are skillfully and neatly constructed with dressed stone blocks (Plates 5 and 39).

Stone walls of the Great Zimbabwe/Khami Tradition have been interpreted as an expression of prestige, status or as political statements by those in control of the site and its territory (Garlake 1973a). These interpretations were considered when looking at the sites in question.

7.3.5 Correlating traditions of ceramic manufacture with stone architecture

The relationship between highly polished graphite burnished wares and the stone structures of the Great Zimbabwe tradition has been demonstrated elsewhere (Soper 1989). By extension field sites with a high frequency of graphite burnished pottery have been identified as Great Zimbabwe tradition sites. These sites have been found within the site territories of 10 km radius of stone enclosures and either constituted the same settlement phase with the stone enclosures, or continued to be occupied long after the building in stone walls ceased.

In the Mt Darwin research area a similar pattern has been observed, the ceramic material at Baranda showing decoration motifs closely related to the Great Zimbabwe tradition pottery. The pottery associated with loopholed stone structures and unwall ed sites with a hilltop location is largely undecorated. The Mahonje tradition is markedly different from other known pottery traditions (or sub-traditions), and is closely associated with loopholed stone structures and related unwall ed sites with a hilltop location.

7.4 Other finds

7.4.1 Faunal remains

Identification of the bones was made mostly in the Archaeology Laboratory at the University of Zimbabwe, but some were sent to the Interpretive Centre at Great Zimbabwe. Bones were recovered in all the sites excavated (Table 23). The preservation of the material from Baranda was generally poor with over 95% of the total assemblage highly fragmented (Fig. 64). Bones recovered from the middens associated with loopholed stone structures were better preserved in the ash middens they were found in, but even here too a high percentage was fragmented. Baranda yielded the largest assemblage of faunal remains. This however is due to differences in extent and duration of occupation of the sites, with Baranda being occupied for a much longer period, and more extensively than Muchekayawa and Chenguruve hills. The latter are likely to have been occupied during unsettled times and for a brief period. This factor may also explain the differences in the domestic stock found at the three sites.

The species composition of the assemblages reflect an open savanna woodland as found in the area today. Indeed, all the recovered animal species are to be found in the area today although now largely confined to the Mufurudzi safari area to the south.

Minor differences exist between Baranda and Chenguruve, both of which show greater dependence on domestic stock (sheep/goat and cattle) and to a much lesser extent, hunting. Muchekayawa however presents an interesting picture with the apparent absence of domestic stock (Fig. 64). The discrepancy could reflect a genuine picture of the site meat diet, but more excavations are required to clarify this problem.

On the whole, the sites, with the exception of Muchekayawa seem to show a normal Zimbabwean Iron Age species composition for northern Zimbabwe (cf. Garlake 1973a). The age composition of the domestic stock, particularly cattle, although not subjected to detailed analysis, reflects slaughter pattern emphasising culling at the mature to old age class.
Table 23.

<table>
<thead>
<tr>
<th>FAUNAL REMAINS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baranda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identified specimens</td>
<td>count</td>
<td>frequency</td>
</tr>
<tr>
<td>cattle</td>
<td>67</td>
<td>63%</td>
</tr>
<tr>
<td>sheep/goat</td>
<td>12</td>
<td>11%</td>
</tr>
<tr>
<td>bovine 1</td>
<td>7</td>
<td>7%</td>
</tr>
<tr>
<td>bovine 2</td>
<td>12</td>
<td>11%</td>
</tr>
<tr>
<td>bovine 3</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Unidentified specimens</td>
<td>8</td>
<td>8%</td>
</tr>
<tr>
<td>total</td>
<td>106</td>
<td>100%</td>
</tr>
<tr>
<td>total number of fragments</td>
<td>1887</td>
<td></td>
</tr>
</tbody>
</table>

MUCHEKAYAWA HILL		
Identified specimens	count	frequency
bovine 1	41	19%
bovine 2	82	38%
bovine 3	22	10%
tortoise	4	2%
medium bird	9	4%
rodent	2	1%
squirrel	3	1%
canine (*"domestic dog")	2	1%
rabbit	4	2%
Unidentified specimens	46	21%
total	215	100%
total number of fragments	423	

CHENGURUVE HILL (WESTERN SITE)		
Identified specimens	count	frequency
cattle	19	16%
sheep/goat	43	36%
bovine size 2	18	15%
bovine size 3	3	3%
tortoise	9	8%
medium size bird	4	3%
Rabbit/hare	13	11%
Squirrel	7	6%
Unidentified elements	3	3%
total	119	100%
total number of fragments		

Fig. 64. Frequency of faunal remains from Baranda, Muchekayawa and Chenguruve Hill.
All this may form a basis for making suggestions on economy and possible relative politico-military conditions of the sites concerned. The cattle diet evidenced at Baranda is consistent with the evidence from other Great Zimbabwe tradition sites at Tsindi (Rudd 1968, 1984), Ruanga and Nhnguzwa (Garlake 1973a) and elsewhere (Garlake 1978). Animal husbandry might have been an additional method used by the inhabitants of Baranda to accumulate wealth. The only limiting factor to this sector of production was probably its proximity to the zone of permanent tsetse infection. It seems however that this zone stretched into the plateau area in response to periodic droughts and population movements conditioned by civil and other wars.

The hunting economy of the inhabitants of loopholed stone structures and related sites was probably dictated by the politico-military conditions prevailing at the time. Presumably, given little to no evidence for crop farming, agriculture had been disrupted, and the decision to hunt was an effort to meet the daily food requirements of the sites.

7.4.2 Metallurgy, agriculture, gold processing and craftwork

The metal objects from all the excavated sites await further analysis. At Baranda the large quantities of iron slag recovered from the western parts of the site suggest metal working, and some of the finished products were recovered from the test pits and Trench I/la (Fig. 65). They are suggestive of a hunting and an agricultural society. Iron scrapers (Fig 65 a), needles (Fig. 65 c, d) arrowheads (Fig. 65 e–f), a blade (Fig. 65 m) and other unidentified objects (Fig. 65 g, i, k, l, n) were found.

There is little evidence supporting gold processing at Baranda, but there are indications from ceramic crucibles that it was mined. The Mukaradzi gold mining area is 2–3 km to the south, and there are historical references showing that this place was frequented by miners and traders since historical times (cf. de Couto, In Theal 1898–1903 (vol. 6), pp. 366–9). The loopholed stone structures on the other hand yielded a higher frequency of crucibles, suggesting that their inhabitants were actively involved in exploiting the Mukaradzi gold belt.

Twisted copper wire (Fig. 65 j) found at Baranda suggest a local production of copper beads, which were made by folding pieces of wire on a metal core. Thin plain copper wire (Fig. 65 h, o, p) was sometimes wound on a wooden core to produce bracelets or bangles (Fig. 65 b).

Metal working seems to have been a minor activity among the residents of the loopholed stone structures. The amount of iron slag recovered from the sites was considerably less compared to that from Baranda. There are finished products especially from Chengururu Hill (Figs. 66, 67).

Grinding equipment has been recovered from all the excavated sites (Fig. 68), and this is illustrative of food processing synonymous with an agricultural economy. In addition to the grinding stones there were numerous pebbles (Figs. 69, 70) (see below).

Only the site of Baranda produced spindle whorls (Fig. 59), one of which had a decoration (Fig. 59 b). These artifacts are usually associated with cloth production, but no cloth was recovered at Baranda to substantiate this claim. Decorated spindle whorls have been recovered in Great Zimbabwe and Musengezi tradition sites. A spindle whorl fragment from Wazi Hill was decorated with three bands of wrapped fibre impression indicating that it was made from a Musengezi sherd. Another fragment from Wazi was graphite burnished and so was the single spindle whorl fragment from the Great Zimbabwe tradition levels at Ruanga suggesting that they were probably made from Great Zimbabwe tradition sherd s (Wafawansaka 1991; see also Fig. 59 h).

All the sites yielded ‘ground’ sherds. This material is easily confused with spindle whorls unless a closer examination is made of the individual sherds (Figs. 57 f–j; 58). It is not clear what these sherds were used for. They were probably used in some domestic craftwork.

The quantity of local pottery recovered from all the sites suggests a form of specialisation, especially in the case of Baranda where there was a heavy emphasis on finishing. All the sites seem to have engaged in subsistence practices demanding the use of pottery. The production of local pottery seems to have been supported by a number of accessories, and I think the pebbles (Figs. 69, 70) and fresh water mussel shells were used for this purpose. Two hundred and sixty pebbles were recovered from Baranda, while 32 were found at Muchekayawa, 41 at Chengururu Hill (eastern site) and 62 came from the western site. The pebbles await analysis for traces of graphite and red ochre. Only two (Aspatharia Walbergi and Unio Mossambicus) out of five shell species have been identified.

7.5 The chronological dimension: dating methods and problems

The limitations of typology have already been discussed at the beginning of this chapter. Historical dating has been discussed in Chapter 6. The main problem is whether the dates available give a tight chronological framework to the sites in the research area, in particular and northern Zimbabwe in general. While some sites are mentioned in written sources, they can only be dated in connection with single or isolated events, which is inadequate. The only exception are Afro-Portuguese sites which are mentioned repeatedly allowing a full chronology of the sites to be reconstructed.
Fig. 65. Metal objects from Baranda
a. scraper, Unit 5642/380/84
b. wound copper bangle, Trench I/la
c. noose, Trench I/la
d. point with twisted end, Trench I/la
e. broken arrowhead, Pit XXI
f. arrowhead, Pit XLVII
g. tongs, Pit L
h. twisted wire, Trench I/la
i. bent iron wire, Trench I/la
j. twisted copper sheet metal, Trench I/la
k. spear/arrowhead shaft, Trench I/la
l. ?shaft of spear/arrowhead, Trench I/la
m. blade, Trench I/la
n. ?shaft, Trench I/la
o. and p copper wire wound around wooden core, Trench I/la
Fig. 66. Metal objects from loopholed stone structures
a. bent pin, Chenguruve Hill, eastern site
b. copper needle, Chenguruve Hill, eastern site
c. twisted iron wire with bead affixed on one side Chenguruve Hill, eastern site
d. twisted iron wire, Chenguruve Hill, eastern site
e. broken fishing hook, Muchekayawa Hill
f. fishing hook, Muchekayawa Hill
g. broken iron arrowhead, Chenguruve Hill, eastern site
h. copper ring, Muchekayawa Hill.

Only a limited portion of imported artifacts provide a reliable chronology. Scientific dating methods are less reliable in dating historical period sites but these methods are being improved all the time. Optically stimulated luminescence (OSL) dates for Baranda are an example.

OSL is a dating method developed from thermoluminescence (TL). Like TL, it is based on the quartz and felspar inclusions in the clay and, the event dated is the latest heating to a minimum of 500 degrees Celsius of objects such as ceramics, bricks, burnt clay and burnt stones containing these minerals (Mejdahl 1989, 1990, 1991, 1992; Botter-Jensen et al 1991, Botter-Jensen &

Fig. 67. Metal objects recovered from Chenguruve Hill (western site)
a. g. broken iron shafts
b. bent iron wire
c. 3 needle
d-e. Hooks
f. iron wire with copper beads strung on it
i. decorated copper sheet metal
j. barbed arrowhead
k. wound copper wire.
Duller 1992). The advantage of OSL over TL is that it slightly more accurate dates and requires smaller samples (10–20 g). With this method absolute dating can be improved considerably. An added advantage is that ceramics with typological features can be dated on the basis of small segments that can be broken off without impairing the diagnostic features.

It is necessary to date the local pottery even in situations where it is found in association with imported material. The former is likely to give a more accurate date of the site since it is directly related to the indigenous activities than the latter. The OSL dates are in excellent agreement with the expected ages of the sites chosen for detailed study, and they pose less problems of interpretation than radiocarbon dates. Since ceramics are valuable cultural indicators, OSL offers promising prospects for a more accurate chronology in the research area.

The problem with radiocarbon dating in the research area is the event to be dated. Wood charcoal associated with pit and housing structures has been used to date sites. There has been no consideration of the age of the wood or charcoal at the time it was incorporated into the archaeological deposit. It is likely that the burnt charcoal recovered in most sites is of considerable age in relation to the site given that the fire-wood was normally collect-
Fig. 71. Calibration and cumulative frequency curves for radiocarbon dates from Baranda (see Table 5.1).

Fig. 72. Calibration and cumulative frequency curves for radiocarbon dates from Muchekayawa Hill (see Table 5.1).

ed dry. Building posts pose less problems because it may be assumed that the trees were cut during the building phase of the site in question, and may therefore date the site.

It is in this context that we should understand the radiocarbon dates from Baranda (Fig. 71). They conflict with the dates suggested by the imported pottery and only one date agrees with the expected historical period dating of the site. Although all the dates accord with the dates for the Great Zimbabwe tradition, all the material for which these dates were derived came from the same context and was associated with the material dated with OSL. There is a high probability that the charcoal sampled for radiocarbon dating at Baranda was slightly older than the contexts associated with it, and therefore produced slightly older dates than OSL.
Calibration and cumulative frequency curves for radiocarbon dates from loopholed stone structures show that there is less than 10% chance that the sites date before 1600 AD (Figs. 72, 73, 74). The probability increases to 40% after 1650. The curves for Baranda (Fig. 71) should be rejected because of the problem with the sampling of suitable material for dating, and the fact that the dates are not in agreement with the imports.

The loopholed stone structures and similar unwalled sites with a hilltop location seem to be contemporary with the last 50 to 100 years of occupation at Baranda. A short term occupation of these sites is argued on the basis of the limited cultural deposits, especially the volume of ash middens outside the stone enclosures.

It is difficult to deduce from the graphs when these sites were abandoned, and this is a major problem in dat-
ing historical period sites with radiocarbon. At least we
can assume on the basis of imports that settlement inten-
sity decreased at Baranda after 1700 AD (Tables 17 and
18). The small sample of imported pottery from loop-
holed stone structures does not suggest anything other
than that they were not receiving trade goods in signifi-
cant volumes. The beads do not assist much in dating
these sites although they are suggestive of later periods
(Mupira, pers. comm). Robinson (1956) dates them to the
18th and 19th centuries.

Stone structures, although not necessarily loopholed,
continued to be built until the end of the 19th century, at
least in some areas in eastern Zimbabwe. These sites were
used as defensive strongholds by the Shona. Late 19th
century travellers recorded this (cf. Selous 1893; Bent
1896). These travellers point out the antiquity of the loop-
holed stone structures, and generally suggest their
replacement with roughly constructed hilltop settlements
in response to the unstable socio-political conditions at
least of the 19th century. In 1890 for example Selous
(1983, p. 339) reported a deserted stone structure in the
Makoni area of Manyikaland which had been used by the
Maungwe people.

Makoni’s town as it now stands is a monument of filth and
uncleanliness, and is undefended by anything but a small
fence. His old town which I also visited, and from which I
believe he was driven by Umzasa, was surrounded by a moat
and a loopholed mud wall; whilst the town, which it is said
was built by his ancestor, Chipudzi, is surrounded by a well-
built loopholed stone wall. This is one of the best old walled
towns I have seen. (Selous 1893, p. 339)

In 1891, Theodore Bent also reported stone structures
used as fortifications from the same general area visited
by Selous the previous year, and gave the following com-
ments:

We spent two days wandering amongst the granite rocks
around Chipunza’s kraal, and we found evidence of a vast
population having lived here at some period. Nearly every
one of the granite kopjes is fortified with walls.... How long
ago it is since these walled towns were built, and who inhab-
ited them, is of course, a mystery. There is however, no evi-
dence of any great antiquity about them ... and from the fact
that the present inhabitants still retain a certain knowledge
of stone building, I think it is a very reasonable assumption
this was one of the great centres of the so-called Monoma-
tapa Empire. (Bent 1896, p. 312).

Summers (1958, p. 11) mentions that the occupation
of stone structures was forbidden by the British South
Africa Company in 1897, after the Shona resistance of
1896–7. The official reason for this is not available,
although we can assume that it was due to the effective-
ness of these structures against the firearms used by the
British.

7.6 The spatial dimension: towards a settle-
ment evolution and growth model of Baranda
7.6.1 The distribution maps

The phosphate data (Map 27)

Map 27 attempts to show the extent of the site through
the reflection of chemically sensitive areas (contour in-
terval of 1.5) where, in some cases, artifacts were not clearly
visible on the surface. Low values were obtained throughout
the whole site (see Chapter 5). High values came from the area between Farms 3 and 7 homesteads,
the east and south of Farm 3, and immediately south of
Farms 7. The areas near the two farm homesteads prob-
ably reflect disturbance.

Value 3 from the south-west of Farm 7 homestead
reflects the low mound which was eventually selected for
evacuation. Value 4, recorded at the centre of the site, was
in response to soil with well preserved bone fragments
associated with local pottery and glass beads. Value 5 was
obtained about 150 m west of Farm 3 homestead but it is
clearly not what it represented. I suspect disturbance as
a cattle pen was once sited near this area, and ash is gen-
erally thrown in ploughed fields to the west. Further south
of Farm 3 are two spots where value 3 was recorded. One
is associated with pottery and beads, while the other is
close to a rocky surface where it is not associated with
any artifacts. One would expect the phosphate to be exod-
ated towards the edge of the site, but this pattern is not
reflected as the site merges with vlei and streams to north-
west, north-east and east, and south-east and south. These
areas are represented by gaps on the map.

The artifacts

Local and imported pottery, and glass beads were used to
determine the trends of surface material. These artifacts
were represented in almost all the units selected for sur-
fase collection. The micro site environment limited the
examination to ploughed and fallow areas. The less than
1.25% collected area is within a 400 m radius from the
centre of the site taken as the point where the north-south
and east-west base lines meet. This represents a sample
bias as vlei, woodland and grassland areas were exclu-
ded. No artifacts were observed on the surface of these
micro-environments, but test pits revealed material from the
underneath.

The ploughed areas of Farms 4 and 5 to the east and
parts of Farm 8 to the north where artifacts were observed
on the surface were excluded from the analysis. Howev-
er this is not likely to alter the results as Farms 4 and 5
for example are separated from the main site by a vlei,
and there seems to be no continuous spread of material
from Farms 3 and 7. However this is not exactly the same
with Farm 8, separated from Farm 7 to the south by wood-
land. Surface material on this farm is limited to the south-west of the homestead, and from here the land slopes to a vlei commencing 50 m to west of Farm 7. No artifacts have been found in test pits XIII and XIV which were sunk along a north-south base line. This can therefore be treated as a separate site unit.

Local pottery (Maps 28–30)
The greatest concentration of local pottery is to the south-west of Farm 7 homestead and the area separating Farm 3 and 7 (see Map 30). This is well drained and flat (see Plates 16 and 17). Elsewhere the land slopes gently in all directions, and there is a corresponding decrease in the distribution of cultural material. Also interfering with a supposedly fairly predictable pattern is the rocky surfaces to the west of Farm 7, and around and south of Farm 3 homestead which are partly responsible for the pattern.

In general there is little daga left on the surface, and it is probable that with the exception of burnt daga all unfired clay has not survived. Therefore the quantity of daga cannot be used as a reliable index for locating built-up areas. Phosphate data does not help us either, since without discounting the possibility of leaching or surface erosion, the community at Baranda could also have found or devised an efficient method of disposing waste.

Imported pottery (Maps 32–4; 36)
Imported porcelain, earthenware and stoneware, even when considered separately, reflects the same general pattern observed above, with the greatest concentration of each ware category being found in Farm 7 and the adjacent Farm 3 to the south. The sample size for glassware (Map 35) is too small to reflect any meaningful pattern but there is a tendency to cluster in Farm 7. A composite map (Map 36) gives a better picture of this surface trend.

Glass beads (Map 31)
The greatest surface concentration of glass beads was seen in units defined east of Farm 3 homestead. Glass beads have a tendency to roll down slopes, and in sandy soils, quickly filtrate downwards with the force of gravity. Fifteen thousand six hundred and ninety-seven glass beads were recovered from trench I/1a to the south-west of farm 7, on the edge of the ploughed field. Another concentration of beads was surface collected close to the edge of the site, south of Farm 3, where ploughed surface was fairly flat before steeply dropping to stream and vlei. The beads were associated with daga and pottery, and were certainly not transported from the higher parts of the site. This area, like any other flat and well drained areas of the site on the edge, was probably an outgrowth from the centre.
7.6.2 Site evolution and growth model as inferred by the surface material

With the establishment of the main site a considerable building activity took place. The plan and layout of the buildings is unclear. There is evidence of daga from some pits and many of the units' surface collected but it is difficult to tell from these fragments what the original houses may have looked like. The partially exposed feature exposed in Trench IIa gives an idea of the nature of the raw material used. No evidence of brickwork was found, but only pole impressed daga. Poles 4–6 cm diameter were used and then covered with a clayey plaster (Fig. 63).

The surface pattern generated by the local pottery and the imports is generally comparable. The artifacts therefore represent the same or complement related activity patterns. We can assume that the artifacts, both imported and local are broadly contemporary. This is confirmed by the dating of the local pottery, which, if we discount radiocarbon dates for the site, tightly matches that of the imports. We might exclude pottery of the terminal early farming, and early, later farming communities, which is probably earlier on the basis of typological dating. The sample for this pottery is too small to permit a reliable surface map for comparison with later wares. However, the same pottery recovered from test pits XXIX and XXX suggest that early settlement phases of the site are to the south and south-west (see Maps 28–9).
It is difficult to use the spatial pattern of the different classes of artifacts to define adequately the function of the site. It has already been indicated above of the difficulty encountered in attempting to differentiate residential from non-residential places. This is a problem with the data used in the analysis. The range of site activities are generally similar throughout the site concerned. However caution should be taken here as excavated areas to the west of the site reveal the presence of iron slag, and hence iron smelting. This activity is normally carried out away from the core area of the site, and more excavations at Baranda should be able to define it. From the artifacts recovered from the site we can infer the following activities:

- imports (beads and pottery)
- trade
- local pottery
- grinding stones
- wild animal bones
- domestic animal bones
- stone pebbles
- crucibles
- spindle whorls
- iron objects
- copper objects
- crop farming
- local, on site production of pottery - a kind of specialisation
- gold melting
- local weaving
- hunting
- beads and bangle manufacture
- livestock farming
- hunting
Map 32. Distribution of Chinese blue and white porcelain at Baranda.

Map 33. Distribution of Far Eastern and Near Eastern stoneware sherds at Baranda.
Map 34. Distribution of Near Eastern and Iberian earthenware sherds at Baranda.

Map 35. Distribution of glassware at Baranda.
There seems to be some kind of specialisation as far as the economy of the site is concerned. Of importance is the adaptability of the site to wider, broad regional trade networks of the Indian Ocean zone. A community of both local and foreign traders may have visited the site.

Baranda was probably established to take advantage of trade. The focal nature or character of the site is demonstrated by its size. Baranda may have assumed the status of a market, serving long distance traders. Probably the basic population was agricultural in character. Surpluses began to develop, allowing a basic form of division of labour to emerge from the inclination of the individuals to barter the surpluses. This could have led to the establishment of a group of specialists located on the site central to the farmers they served and with whom they exchanged. The site gradually became the most convenient place for trade between the farmers, and assumed the status of a permanent market. This model has been used by Berry (quoted in Hodder & Orton 1976, p. 74). Baranda later developed external contacts with, first the Swahili of the East African coast, and later, the Portuguese. It probably acted as a node for the redistribution of imports to surrounding areas.
8. RE-EXAMINING THE HYPOTHESES:
THE STATUS OF THE GREAT ZIMBABWE AND MAHONJE
TRADITIONS AND A CRITIQUE OF 'REFUGE'

8.1 Introduction

Two problems posed in the first chapter and discussed in
Chapter 6 are addressed here. The first problem is about
the socio-political status of the Great Zimbabwe tradition
settlements in the research area. The second problem has
implications which are chronological, and an attempt is
made to understand the development of the Great Zim-
babwe tradition during the historical period. Some con-
clusions arrived at by previous researchers in northern
Zimbabwe are re-examined on the basis of the current
state of evidence. Three hypotheses are presented, and
alternative explanations are given. The context and posi-
tion of loopholed stone structures and other unwalled sites
with a hilltop location is discussed, and a critique of the
so called 'Refuge' Period is presented. To understand the
Mahonje tradition in an historical archaeology context the
non-Karanga groups of the mid and lower Zambezi val-
ley are discussed in relation to the Mutapa and Maravi
states.

8.2 The position of the Great Zimbabwe tradi-
tion in northern Zimbabwe

8.2.1 Presenting the hypothesis

Both historians and archaeologists have argued that the
Great Zimbabwe tradition sites in northern Zimbabwe
mark an earlier phase of the development of the Mutapa
state (cf. Abraham 1959, Garlake 1973a, Beach 1980).
The founders of the Mutapa state are believed to have
come from Gururuwa (Abraham 1959), and the process-
es of state formation took place earlier in the 14th cen-
tury with the Mutapa dynasty eventually dominating other
dynasties.

Garlake (1982) suggested that Great Zimbabwe Tradi-
tion sites in northern Zimbabwe represented an early
phase of the Mutapa state. He (Garlake 1973b) saw these
sites as religious centres representing the extension of
political and economic control from the site of Great Zim-
babwe in the south into northern Zimbabwe but later (Gar-
lake 1978) changed his views, regarding the sites as semi-
autonomous or autonomous centres.

A link between Great Zimbabwe in the south central
part of the country and the rise of the Mutapa state has
been suggested with Abraham (1959) claiming that the
last ruler of the Great Zimbabwe state was the first Mutu-
pa, and Beach (1980, pp. 61–2) vaguely suggesting the
existence of some archaeological links between the two
Beach used oral traditions and argued that the expansion
of the Great Zimbabwe tradition into northern Zimbab-
we represented a movement into the area by Karanga
dynasties not directly under the control of the Great Zim-
babwe state. The Mutapa state is regarded as having
emerged from one of the powerful Karanga dynasties
which managed to subdue other dynasties.

As pointed out in Chapter 1, there has never been a
serious consideration of the Mutapa state as a deliberate
extension by the rulers at Great Zimbabwe to take advan-
tage of the resources provided by the northern extension
provided a model which strongly suggested this possibil-
ity. Assigning archaeological sites to the state has been
largely avoided given the inadequate data available. If the
Great Zimbabwe tradition sites in northern Zimbabwe
constitute an early phase of the Mutapa state, how would
one characterise the period from the 15th to the 19th cen-
tury? What would a later phase of the Mutapa state com-
prise?

8.2.2 Evidence of the Great Zimbabwe tradition sites
in the research area

Two small stone walls of the Great Zimbabwe tradition
have been located in the area chosen for detailed study.
One of the sites is located in Matanda Farm in the Upper
Mushaki Valley and the other on a hill to the east of
Chomagora Resettlement Village (see Maps 10 and 14).
The site at Matanda Farm is a well coursed wall (P/Q-
style), 2 m long, on the south side of a group of boulders
about 20 m across (Plate 5). East of Chomagora Reset-
tlement Village is a granite landscape with at least two
stone structures; a loopholed stone structure is on the
main hill to the south-east, and a Great Zimbabwe tradi-
tion stone structure on an adjacent rocky and bare-rock
surface to the northwest. This site, built with P/Q wall-
ing, is about 10 m long north-south. A triangular plat-
form abuts this wall to the east. Two daga concentrations
are located to the south, adjacent to the main structure
(Fig. 1). This site is only about 5 km west of Baranda.
In addition graphite burnished pottery similar to that from the stone structures has been recovered from a number of unwalled sites to the east, the largest of which is Baranda. Some of the sites have imported artifacts, with the largest amount coming from Baranda.

About 30 km north of the research area in the Nowedza Communal lands (Plate 39) is Ngome, a well preserved stone structure on a low hill. The site has three discontinuous walls. The first wall trends north-east south-west and is about 10 m long. Wall height ranges from 1.5 to 2 m. The second wall is 15 m to the east of the first one and is about 1 m thick. It is well coursed P/Q walling trending east-west for about 5 m before abutting on another wall aligned north-south. This third wall is 10–12 m long.

There is general agreement among scholars that the fullest expression of the Great Zimbabwe tradition sites is found at Great Zimbabwe itself and the surrounding areas (Garlake 1973a; Sinclair 1987; Soper 1989) where it represents the indigenous population of the area. The appearance of these sites in northern Zimbabwe and the south-western parts of Zimbabwe represents an expansion into the area. In northern Zimbabwe this expansion has been taken to represent the emergence of the Muta-pa state, but no firm archaeological evidence has been provided to support this assumption.

8.2.3 The identity of Baranda: capital or trading centre?

Without neglecting the importance of the local agricultural economy, Baranda assumed important external links with the western Indian Ocean zone as evidenced by the imports during the 16th and 17th centuries. The quantity of imports recovered on the site reflects the large volume of such products from wherever they were sourced. The site must have attracted both local and external traders, the latter probably the Portuguese and the Swahili.

Documents referring to the trading site of Massapa have been commented upon in Chapter 6. The Portuguese refer to Massapa after 1580 when some of them were living in the interior, but there is no evidence to prove that they were the first to be associated with it. This site was probably frequented by the Swahili traders before the Portuguese replaced them during the later part of the 16th century.
The name Massapa may refer to a local activity, environment, etc. Baranda is environmentally characterised by well drained sandy soils also found in adjacent farms. These soils are referred to locally as shapa or mashapa. These soils are common in Chesa and the Portuguese probably used the term to refer to a trading site located in that particular soil area.

The cartographic evidence presented in Chapter 6 does not indicate that there was a Mutapa capital site near Mt Fura. The only place known to the Portuguese cartographers was the trading market of Massapa, and this is variously located either to the east or north-west of the mountain. The geographical details of its location place the site approximately north of the Mukaradzi river, and it is probable that Baranda field may have been the original site of Massapa.

8.2.4 Redefinition of the problem

There is continuity of Great Zimbabwe tradition settlements into the historical period in northern Zimbabwe as indicated by sites with local graphite burnished pottery associated with foreign trade goods. Some of these settlements became important trading centres during the historical period.

I accept Sinclair’s (1987) model which views the Mutapa state as the northern part of the 3-cluster model of the Zimbabwe state, synonymous with the Great Zimbabwe tradition. The 3-cluster model of the Zimbabwe state represents the real, historically and archaeologically documented political divisions of state formation on the Zimbabwe plateau. The southern cluster comprise mainly the developments around the site of Great Zimbabwe. The western cluster constitutes the area of the Torwa state. Sinclair (1987, p. 161) argues that the rise of the Mutapa state represents political and economic adjustments to changing circumstances rather than structural transformation, and can be accounted for by a complex interaction of political, economic and environmental factors. The extension of the Great Zimbabwe tradition in northern Zimbabwe is consistent with the formation and development of the Mutapa state during the prehistoric and historical periods.

At this point the relationship between Great Zimbabwe tradition sites and places of Afro-Portuguese contact (the trading places) should be discussed (Maps 17 and
This relationship provides a model for understanding the impact of merchant capital in some Shona social formations. The decline or collapse of the Mutapa state is essentially correlated with this relationship. The archaeological evidence from Baranda allows the construction of a model which explains structural changes within the Mutapa state during the historical period. Without these changes, it would be difficult to understand the context of the Mahonje tradition proposed earlier. The following section presents evidence of such a failure by previous researchers on the archaeological identity of the Mutapa state. A full discussion of the model is presented in the final chapter.

8.3 The position of loopholed stone structures in northern Zimbabwe

8.3.1 Presenting the hypothesis

Mt Fura is viewed as the seat of the Mutapa state and the stone structures found within it are regarded as constituting a capital pattern. By implication loopholed structures in the area are Mutapa sites (Huffman 1986, pp. 291–338). Huffman made the following statements (see also Soper 1988):

The core of the Mutapa state was around Mount Darwin and the largest dzimbabwe in this area is Fura. This complex, like Great Zimbabwe and Khami, has the full capital pattern: Elite enclosures on the outer edge encircle a large palace, court and premarital building. Surprisingly, however, this complex is situated on top of Mt Darwin, 375 metres above the surrounding plain, with limited and difficult access.... Even though Fura is the largest dzimbabwe in the Mt Darwin district, its stone walled area only enclosed about 6500 square metres—whereas the same is the larger level-five settlements under Great Zimbabwe—and its overall extent is only a third that of Khami.... The size of this capital corresponds to the limited extent of the Mutapa kingdom and when compared with Khami and its territory, highlights the fragmentation that occurred within the old Zimbabwe empire. (Huffman 1986, pp. 326–7)

The interpretations made by Huffman are inconsistent with the archaeological evidence. The basis of Huffman’s archaeological definition of the Mutapa state derives from the research conducted by Axelson and Abraham during the 1960s. Later a Darwin facies was postulated as representing the spread of the Great Zimbabwe tradition settlements into northern Zimbabwe (Huffman 1974, 1975). This is based on museum data which identified loopholed stone structures as Great Zimbabwe tradition sites (see for example Sinclair 1987, p. 179). The general character of loopholed stone structures has been presented in Chapter 5.

8.3.2 The stone structures on Mt Fura

Systematic problem oriented surveys have been carried out on Mt Fura since 1985 by the author and by colleagues in the Archaeology Unit of the University of Zimbabwe. Air photographs were used to identify conspicuous features located on the mountain, but many of the stone enclosures do not show up because of tree cover (see Soper nd). Despite the rugged terrain, extensive foot surveys are the most effective method to document the archaeological sites from this mountain.

Mt Fura and its north-west ridge can be divided into three sections: the mountain itself rising to 1507 m above sea level; a north-western massif rising to nearly 1300 m; and a lesser central massif of up to 1170 m, bounded by saddles of 1130 and 1090 m to north-west and south-east respectively.

A total of 19 stone structures have so far been recorded on the mountain, and this includes those on small ridges and spurs to the north-east and east. The rock of Mt Fura, and hence the raw material for stone structures, consists of sericitic schist which breaks into sharp edged irregular stones and occasionally into sizeable slabs. With this material, neat building is difficult if not impossible and though walls may reach a height of around 1.5 m or occasionally more, the wall faces are always rough and no coursing is possible (Plate 8). Most of the enclosures found on the mountain have a sub-circular plan, some are elongated or sub-rectangular, while others are single short walls. The interior of the enclosures, sited as most of them are in prominent positions, frequently displays bare rock with a steep angle of dip.

Loopholes are a consistent feature of the enclosures wherever the walls are sufficiently well built and preserved. These are commonly around 20 cm square, framed by small slabs and penetrating the full thickness of the wall. The field of view is strictly limited and they may be no more than 50 cm above ground level. Where entrances are identifiable there is usually a loophole within a metre or two on one side or the other but they face other directions as well. Entrances where identifiable are usually simple gaps in the wall. Three examples of lintelled doorways have been recorded on enclosures found in the north-west massif (Soper nd).

It is difficult to reconcile parts of Huffman’s statements with observations on the ground (see Soper 1988). The sites from the summit to the west-north-west of the mountain assume a distinctively linear pattern imposed by the topography. Other enclosures to the east, north-east and north-west are located either on spurs or ridges.

Huffman gives estimates of the size of the stone enclosures, and his identification of ‘court’ and ‘premarital’ building is questionable. He seems to have been unaware of the existence of these structures not only in Mt Fura, but also in other hilltop locations in the general area.
It is the cultural relationship between Mt Fura and the Great Zimbabwe tradition which is questionable. While there is no doubt about the cultural relationship between Khami and Great Zimbabwe any cultural links with Fura are doubtful. The enclosures on Mt Fura are approximately circular with no sign of radial walls, quite different in character from the majority of the Great Zimbabwe tradition enclosures. There is no obvious association with Great Zimbabwe tradition pottery. The building style is rough and some enclosures have loopholes which are not a Great Zimbabwe feature. This suggests a different building tradition.

8.3.3 An alternative hypothesis

Written sources do not specifically mention Mt Fura as having been at some stage the capital of the Mutapa state. If there was a capital on the mountain before the 16th century at all, the Portuguese would have certainly recorded traditions about it. When stone building was reported by the Portuguese in the first half of the 16th century (cf. Alcaçova’s account in Chapter 6), they did not specifically mention mountain locations.

Secondly the only reference to stone walling on Mt Fura is at the beginning of the 17th century, and this is probably in connection with wars of the late 16th/early 17th century. The sites may have been used as fortifications. The rugged nature of the mountain coupled with locations difficult of access makes it an unsuitable choice for a capital. The decision to build stone walling on such a terrain was a consequence of conflict, not a matter of prestige. These sites therefore form unequivocal proof of episodes of conflict in the area of the Mutapa state. Summers was referring to places used as defensive or hiding places by the Manyika. These sites were located on virtually inaccessible positions commanding a wider area. According to Summers these sites were not permanently occupied. Usually women and children lived in them, while men defended the villages below. The types of refuges included partly stone walled rock shelters and caves. Summers classified all modern wares as ‘Refuge’ although he did not imply that they were always found in refuges.

Summers (1971, p. 90, p. 190) later defined a class of stone structures found in many parts of Zimbabwe as ‘Refuge’ and Huffman (1971a, pp. 36–7, p. 41; 1974, 1975) used the term to characterise the later archaeological sequence of the country. In addition to the rough stone structures used as fortifications by the Shona, Huffman added hunters’ camps, pioneer settlements, and British South Africa Police forts dating to the same period. He suggested a link between 19th century Zezuru pottery found near Harare with Harare sub-tradition pottery of the 13th–14th centuries (Huffman 1974).

Beach (1983) uses the phrase ‘Refuge Tradition’ in reference to the period covered by the Shona traditions and suggests how oral traditions can be used in connection with certain categories of archaeological sites, for example stone structures and non walled sites some of which are referred to in oral traditions. Beach (1988) also argues that research covering the period from the late 16th to 19th century will close a considerable gap in the archaeological sequence and that this unexplored gap is represented by ‘Refuge’ sites. Beach reviews the dating problems of the period showing that scientific, chronometric dating methods may be less reliable than imported datable material. Beach further demonstrates the extent to which one could attain a certain level of detail pertaining to ‘Refuge’ sites by presenting Izidoro Correia’s list of mines known in the Districts of Sena, Mozambique. The list dates back to 1859 and shows that trade persisted in some parts of the Zimbabwe plateau and had not been disrupted by the mfecane as earlier researchers had proposed.

Shona oral traditions date from the 16th century and the term ‘Refuge’ would in this case suggest the development of Shona history from that period to the 19th century. ‘Refuge’ sites are said to have originated in the 16th century out of the need by the Shona to protect themselves against each other (Beach 1988).

8.4 The Mutapa state in relation to the ‘Refuge Period’

8.4.1 Presenting the hypothesis and a view of the term ‘Refuge’

The Mutapa state developed into ‘Refuge’, representing a period of decadence in stone construction and the emergence of fortified settlements as dictated by the prevailing politically unstable conditions within the state.

The term ‘Refuge’ was first used by Summers in Nyanza (1958, pp. 124–5) with the following definition: sites with later, 19th century Shona pottery and sometimes containing datable imported material; or later Shona sites with traditions about the 19th century Nguni raids; or Shona sites which resulted from inter ethnic fighting in the 19th century with other Shona groups defending themselves against their hostile neighbours. Most of these sites date from 1828 to the late 19th century. Some stone structures are included in this definition.

8.4.2 The archaeology connected with ‘Refuge’

In the early 1980s one site thought to belong to the ‘Refuge Period’ was excavated (Izzet 1980, 1984). The site which is on Crowbrough Farm in western Harare is a rough stone walled sub-circular enclosure on hill top. The
daga and pottery on the site indicated substantial human occupation. Pottery recovered suggests the site was occupied twice, first by the early farming and iron using Maxton people (c. 900–1100AD), and then during a much later period most probably by the Zezuru (c. 1800–1900AD).

Thornygrove (1988 pp. 29–36) excavated Castle Kopje, Wedza, east of Harare to establish the relationship between the late Shona people and the stone walling in the area. The basic assumption was that the hilltop defensive sites in eastern Mashonaland were built by the late Shona, as a response to warfare ever since the 16th century to the beginning of the 20th century. The traditions and documentary evidence about the site and its locality are given though not critically enough.

From the site, 13 pottery classes were defined on the basis of shape and the presence and absence of graphite. Three assemblages were recognized; Harare (Assemblage A) (classes 1–6), ‘Refuge’ (Assemblage B) (classes 10–12) and Great Zimbabwe (Assemblage C) (class 13) with classes 7 and 10 being common to both assemblages A and B. No dates were obtained for assemblage B. Thornygrove’s characterisation of the ‘Refuge’ Period assemblage is based on Huffman (1971) and demonstrates that stratigraphically this assemblage and Harare pottery do not constitute a gap in between but may indicate some broad cultural continuity.

8.4.3 An alternative terminology

The term ‘Refuge’ has been used to characterise the period from the 16th century to the present. The term is basically a biased, racist and unsuccessful attempt to interpret the cultural and other developments in the whole of the Zimbabwe plateau leading to the 19th century. It is misleading and prejudicial to talk of ‘Refuge Tradition’. The term also carries chronological connotations, with little cultural meaning.

The term has implicit meanings which are not neutral. It is loaded with meanings pertaining to origin of the later Shona, and carries judgements on Shona society, denying or relegating some of the complex technological, political, social and economic achievements made since prehistoric times. In this way the term ‘Refuge’ has failed to answer the question as to what the period between the decline of complex state systems and late 19th century represents in socio-economic and cultural terms, and should therefore be rejected.

Southern African archaeologists used the term ‘Ruins Culture’, to explain the cultures responsible for stone buildings found on the Zimbabwean plateau and parts of Mozambique, South Africa and Botswana. This is also a highly prejudiced term. A more appropriate though not entirely suitable designation, the ‘Great Zimbabwe–Khami Tradition’ or ‘Culture’ was later adopted as a catch all term subsuming a number of different entities (Sinclair 1987). There is need to define or re-define some of the analytical units in archaeology to emerge with a more agreeable or representative terminology. The term ‘Refuge’ poses considerable problems in application so much that we propose that it should be dropped in favour of the standard archaeological convention of naming traditions and phases.

The evidence from the research area poses a number of research questions connected with the hypothesis; first whether the so called ‘Refuge’ sites in northern Zimbabwe represent the Mutapa state, and second the nature of transition from Great Zimbabwe Tradition to ‘Refuge’ in the area of the Mutapa state. If this relationship can be established, how can archaeological sites be assigned to it?

To propose that ‘Refuge’ sites in northern Zimbabwe represent the Mutapa state is to imply that the loo pholed stone structures and other sites located on hilltops characterise the Mutapa state. This suggestion is not consistent with the evidence from written sources and fails to explain what these sites represented. The Great Zimbabwe tradition and ‘Refuge’ represent mutually exclusive entities for there is no evidence to suggest that there was a direct transformation from the former to the latter. Change seems to have been abrupt rather than gradual. This observation is consistent with the historical evidence.

8.4.4 Historical evidence for the mfecane in the research area

One aspect of the so called ‘Refuge’ phenomenon in the research area will now be examined. Some of the architectural evaluation conducted on stone structures included aspects relating to raiding and warfare in the research area. The present day communities are detached from 19th century events which took place in the area, as the composition of the local population has been radically altered by government legislation pertaining to land.

The mfecane, the disturbances which are said to have brought widespread damage and destruction to the societies in Southern Africa as a result of the movements of the various Nguni groups from Zululand, dominates the historical studies relating to the 19th century. As indicated above, the Nguni forced the people to leave their traditional village lives to seek refuge in fortified hilltops.

Beach (1984a, pp. 52–9) has presented a balanced picture on the mfecane ‘predatory’ states, emphasising that most people, possibly with the exception of the Rozvi, suffered much less damage than previously thought. In most areas of the Zimbabwe plateau, the mfecane phenomenon was brief, and in others it was never experienced at all (Beach 1984a, p. 53).
In northern Zimbabwe there is evidence to show that the Nguni under the leadership of Zvengendaba settled in the middle Mazowe basin and attempted to create a state there. This event has been dated to some time after 1831 after the Nguni and some Sotho groups had destroyed the Rozvi of Changamire in the south-western area of the plateau. However Zvengendaba was forced to move northwards having been disturbed by the Nguni groups led by Maseko and Nxaba. By 1836, the Nguni phenomenon on the northern part of Zimbabwe plateau was over. On the basis of this evidence we might expect the hilltop settlements in the middle Ruya-Mazowe valleys to have been formed in response to the raids. The survey sample we have from the research area is too small to permit any meaningful conclusion on this. In the south central parts of the Zimbabwe plateau, Weinrich (1971) has produced some evidence relating to 19th century Karanga settlements in the area. Weinrich suggests that original Karanga settlements were founded on hilltops, and with population pressure and growing demands for land, there was a multiplication of villages around the hills formerly used as defensive sites against the Ndebele.

The dating of the loop-holed stone structures does not suggest a link with the Nguni phenomenon. Perhaps some of the places were re-used by the local people in the 19th century. There is strong archaeological indications that the pottery found in these structures and other sites with a hilltop location were probably ancestral Tonga in origin, and evidence for this is discussed in the following section.

8.5 The mid and lower Zambezi valley Tonga and their relationship with the Mutapa state during the historical period

8.5.1 The historical identity of the Tonga

The non-Karanga speakers frequently referred to as ‘Tonga’ do not share a common origin. The meaning of the word ‘Tonga’ is unclear, but possibly referred to conquered groups living on the periphery of major state systems like the Maravi and the Mutapa states. A number of ‘Tonga’ groups have been identified: those who lived in the mid-Zambezi in the Dande and adjacent territories, those in the lower Zambezi around Sena (cf. Isaacman 19972a), and those who lived near the Bay of Inhambane, the Lakeside Tonga of modern Malawi and those who lived in area between the Save, the Zimbabwe plateau and Delagoa Bay (Beach 1980, pp. 157–8; Smith 1974, pp. 568–80; Smith 1983, p. 208). It is not clear how these groups related to the Gwembe Valley and Plateau Tonga of southern Zambia and the area now covered by Lake Kariba (cf. Abraham 1962 p. 75; Weinrich 1977). Smith (1983, p. 208) suggests that the Tonga might have occupied most of central and southern Mozambique, but were forced to move when their domains were encroached upon by the Tsonga (in the far south) and the Karanga of the Zimbabwe plateau. This movement is estimated by historians (cf. Smith 1983, p. 108) to have began early in the second millennium, and by 1400 it was complete.

The groups that concern us here are those who lived in the mid and lower Zambezi. It is important to understand the historical relationship between the Tonga and the Mutapa state at least between 1500 and 1700, and how this is reflected in the archaeological record. The historical relationship between the Tonga and the Mutapa state is complex. However it is not difficult to understand.

Characteristic of these groups is the absence of a highly organised, complex socio-political system. Their highest political organisation was the territorial chief (fumu) who was in control of a number of villages (Isaacman 1972a). The Portuguese documents also point out that at least by the beginning of the 16th century the Tonga, like the Sena living in between the town of Sena and the mouth of the Zambezi, were politically organised into chiefdoms or chieftaincies (dos Santos, in Theal 1898–1903 (vol. 7), Ethnophia Oriental, p. 263; Bocarro, Decade, in Theal 1898–1903 (vol. 3) p. 227). In much larger areas a lineage relationship existed whereby a chief was assisted by smaller territorial chiefs. The Tonga groups of the mid and lower Zambezi lost a considerable amount of their independence with the expansion of both the Maravi state in the north and the Mutapa state in the south and southwest, towards the Zambezi-an area regarded by both complex political systems as a power vacuum. As would be expected, total control of such areas was difficult or almost impossible. This could only be achieved by arrangement or concessions of some kind, and this explains why most of the revolts in the Mutapa state stemmed from this area. According to Isaacman (1972a) the break away tendencies were so great that by the late 16th century there was conflict.

The Mutapa state dominated these people for most of their existence (Beach 1980, p. 66). Beach says however that these groups were never completely assimilated and fought wars for their independence on a number of occasions. The Tonga under Samungazi, for example fought the Mutapa state from c. 1550 to about 1572, and only succumbed to the Portuguese in 1575 (Beach 1980, pp. 66 & 124). They also opposed Mutapa Gati Rusere in 1608 (after he had killed a Tonga ruler for allegedly supporting Matuzviyanwe) (Beach 1980, p. 126), and the Portuguese in the 1630s and 1660 (Beach 1980, p. 158). In 1667 the Tonga living beyond Ruenya rose against the Portuguese and looked for support from Mukombwe. This resistance was suppressed in 1672 (Beach 1980, p. 133).
The Portuguese had started to establish their prazos especially after 1630. These severely altered Mutapa-Portuguese commercial and political relations.

At some stage the Tonga were prepared to recognize the Mutapa as their ruler, but as Beach puts it:

... they kept a separate identity in the same way that they kept their separate language, and when pressures forced them to rise against their rulers they did so as a complete group and not simply as followers of one faction or another within the Shona ruling group. (Beach 1980, p. 66)

Some Tonga groups in Barwe, Ruenya and Nyanga came under Karanga rule. In Barwe they remained the basic population of the area, and Beach (1980, p. 158) notes that ‘... their language and culture came to be adopted by the Makombe ngurwe dynasty of Shona origin which had conquered them.’ Along the west bank of the river Ruenya, were several Tonga speaking dynasties and Beach (1980, p. 164) is of the opinion that they were probably tributary to Barwe, and that they were overcome by Karanga dynasties from the Mutapa state who were then culturally assimilated.

Territorially, the Tonga country, as well as Barwe, Manyika, Teve and Danda were at various times tributary to the Mutapa. For much of the time they were independent or at war with the Mutapa. The history of the eastern Shona is dominated by this changing relationship (Beach 1980, p. 114).

It is not clear how the Buddya relate to the Tonga. They are however known historically to have moved from the lower Zambezi to the plateau area during the 17th century.

The Sena speaking Tonga of Barwe occupied the Nyanga plateau by about the 17th century (Beach 1980, p. 185), and are probably the builders of the extensive terraces, numerous pit structures and fortifications found in the area (cf. Summers 1958). While this association is still inconclusive from an archaeological stand point, a similar situation exists in northern Zimbabwe where some looched stone structures were probably built by groups of people with a mid or lower Zambezi origin. The identification of the builders of these sites is somehow complicated by the Maravi phenomenon, which also had a considerable impact on the Mutapa state during the late 16th and the early 17th century. This phenomenon is clarified in the next section.

8.5.2 The Maravi state formation and its effects on the Mutapa state, 16th-17th century

The dominant ethnic group in the territory demarcated by the lower Zambezi, the Luangwa river, the south-west shores of Lake Malawi and the Shire river is the Chewa. The Chewa people are Bantu speakers, probably of Luba-Lunda origin. They created several kingdoms known as Maravi. The earliest documentary reference to a Maravi kingdom south-west of lake Malawi comes from a Portuguese document of the early 17th century (Gasper Bocarro, in Theal 1898-1903 (vol. 3), p. 416). Bocarro stayed with a chief, Muzum at his town of Manvvi in March 1616. The Maravi state governed by a ruler called the Kalonga, was probably founded in the 14th or 15th century. By the 16th century it had spawned a second Maravi kingdom among the Manganja of the Shire valley. Another off-shoot soon created the Maravi kingdom ruled by the Undi (Lundu) in the Tete area of the Zambezi. Later this kingdom began to derive economic strength from the ivory trade of the Zambezi basin (Birmingham 1983, pp. 13-4).

Tension had already been rising north of the Zambezi since the 1580s. This is the time when the Zima come into the picture (Mudenge 1988, p. 224). Mudenge sees this as a consequence of state formation but Smith (1983, p. 223) interprets this as a struggle for supremacy among the Maravi states, a number of which had come into existence by the 16th century. These states were linked by kinship ties in a hierarchy based on seniority and the relationship of their respective rulers to the founder of the dynasty. As commerce expanded, however, the latent contradictions in the social formation began to surface. The kingdom of Lundu, which was closer to the Zambezi and its trade attempted to prevent the senior kingdom of Kalonga from direct participation in this commerce. It despatched armies, later referred to as the Zima, to subjugate the vast territory that extended eastward to the coast and northwards from the Zambezi to Mozambique Island, and possibly beyond. The Lundu kingdom was eventually defeated by Kalonga with the aid of the Portuguese, who eventually secured control of a huge territory north of the Zambezi.

In 1597 some Maravi groups invaded the Mutapa state. They were probably Karanga related refugees who had gone north of the Zambezi and subsequently mobilised by the Lundu. The Tonga of the Zambezi sometimes joined forces with the Marave against the Mutapa, and the events of the early 17th century, related in detail above should be understood in this context. The political relationship between the Maravi and the Mutapa state is vaguely reported in written sources. There is little documentation relating to the former. Colonel Doinizio de Mello e Castro writing from Tete in January 1763 to Governor Pedro de Saldanha e Albuquerque, reported on the traditions collected from the local people which seems to suggest the political relationship between the two state:

To a Princess, daughter of Monomotapa, married with a Marave Regulo, was born a first son who got the title of Caronga, Lord of all the lands divided by the Zambeze to
the north of Quelimane to where the East Coast of Africa ends, and also of five crowned kings and over twenty regulos, all of them powerful.... This name Caronga is given to all the Marave Emperors and, because of their court is more than two hundred leagues away from our villages and there is no precise information about those who succeeded the first emperor; and because there is no communication between us and him, it is not possible to give an account of their individual deeds and victories and we only know about the following, which we got through some Cafres and regulos that trade with our residents. (Colonel Doinizio de Mello e Castro, In Beach & Noronha (vol. 2), 1980, p. 75)

The documentary reference seems to refer to events more than three centuries old, and needs independent confirmation. Apart from the political relationship between the two states, the tradition seems to suggest that cultural interaction and contact between the Karanga and the Maravi peoples had been taking place over a number of centuries. This aspect is crucial to understanding the Mahonje tradition.

8.5.3 The archaeological identity of the middle and lower Zambezi valley and southern Malawi

It is clear from the above summary of the Tonga and Maravi groups that there was a process of interaction and contact between communities in the Zambezi valley and adjacent plateau areas. The archaeological evidence from this area will now be examined to see whether it can be correlated with the historical data given above, and whether it could be of any help in understanding the cultural identity of some sites recorded in the research area.

Aspects of Tonga archaeology have been documented in southern and eastern Zambia (Fagan 1963, Fagan et al 1969; Phillipson 1976). Nothing is known on the archaeological identity of the Maravi state. The pottery sequence for southern Malawi is discussed in detail in the many publications by Robinson (cf. Robinson 1973) and most recently by Davison (1991). Litttle is known about the region between Lake Malawi and the Zambezi, and Davison (1991, p. 58) has made no correlation of her revised sequence for southern Malawi with ceramic traditions of what she terms the Later Iron Age Maravi confederation. She has however demonstrated that at least two gaps exist in the archaeological sequence of the region: the period between the 8th and the 15th century, and between the 16th and 19th century. A new pottery tradition, Namaso, dated from the late 8th to early 11th centuries AD has been defined. As yet there is little, if any, archaeological data from Mozambique to compare with known ceramic traditions in northern Zimbabwe and southern Malawi (Sinclair, pers. comm.).

Robinson (1973, pp. 6-7) attributed Mawudzu ware, first identified at Mawudzu Hill, south of Lake Malawi, to the Chewa under the rule of the Kalongas. The site has been dated to AD 1480+/-95 (uncalibrated). A variant of this ware has been identified at Mitongwe and radiocarbon dated to AD 1560+/-80 (uncalibrated). Robinson suggested a relationship between Mawudzu ware and Musengezi pottery in northern Zimbabwe. 'These include rather similar vessel forms such as straight-sided, deep bowls, the frequent use of point impressions, arcade motifs and lip indentation in decoration.' (p. 7). Mawudzu ware was replaced by Nkudzi ware sometime in the 18th or early 19th century (Robinson 1973, p. 7), and the Manganja of the Shire valley still make modifications of this pottery. The Bisa and the Yao ivory traders are also reported to have used this ware. The Chikunda, originally warrior slaves of the Portuguese, were probably instrumental in the spread of Nkudzi ware, as they later on became involved in the long distance ivory trade. The ethnic composition of the Chikunda is heterogeneous, and include peoples mostly from a number of ethnic groups in southern Malawi, the mid and lower Zambezi (Isaacman 1972b).

According to Robinson (1973, p. 10) the available ceramic evidence does not appear to reflect sizeable human movements across the Zambezi from southern Malawi into northern Zimbabwe during the later Iron Age, but small groups of people. There are subtle typological similarities between some later Iron Age wares of southern Malawi and those of northern Zimbabwe possibly at both the attribute and assemblage level, but Robinson called for more extensive investigations to alter or substantiate this observation. Indeed more work is required especially for the area between Lake Malawi and the Zambezi valley, where the archaeology is poorly known.

8.5.4 The relationship between modern Tonga pottery and Mahonje

There is ethnographic evidence indicating that the Tonga communities living in the Sebungwe and Mutoko areas of north-western and north-eastern Zimbabwe (see Goodall 1946; Schofield 1948) respectively made pottery typologically similar to that defined in this work as Mahonje. It is probable that modern Tonga pottery developed from Mahonje and the latter represents ancestral Tonga and related groups such as the Barwe, or Budya who were living close to each other until sometime in the 17th century (Beach 1980). We would expect their pottery traditions to influence one another.

The area of distribution of Mahonje tradition sites has not yet been completely demarcated, but presumably covers the north-eastern region of the plateau, and parts of the mid and lower Zambezi valley area. Cartographic specimens place the Tonga of the 16th and the 17th cent-
tury in this area (Map 22), and any dispersal of Tonga material culture should be traced from here (Map 37). Typologically, present day pottery made by the Tonga, Barwe, Budya and related communities represents cultural continuity at least from the 16th century, and closes the chronological gap of the later historical period.

8.6 Overview

We can now integrate the evidence presented in this chapter in the context of the developments which took place in the research area during the historical period. Previous investigators were unaware of the presence of the stone structures of the Great Zimbabwe tradition and tended to confuse them with loopholed stone structures. Two main developments characterize the archaeological evidence from the research area: the evidence synonymous with a state, and the collapse or decline of that state.
9. CULTURAL DEVELOPMENTS IN THE RESEARCH AREA AND THE ARCHAEOLOGICAL IDENTITY OF THE MUTAPA STATE

9.1 Introduction

A number of conclusions will now be drawn which will help towards understanding the Mutapa state from an archaeological point of view. First the total archaeological evidence is presented in the context of a cultural change. The developments defined in earlier chapters on the basis of ceramic typology and settlement architecture represent significant internal changes in the research area. I will then focus on Baranda, the largest site found in the research area with both local material and imported goods. This clearly indicates commercial contacts within a broader regional network. On a local level it reflects internal changes or transformations which took place within the Great Zimbabwe tradition, and which can be used to understand the decline of the Mutapa state. The distribution of Great Zimbabwe tradition sites in northern Zimbabwe in relation to known places of Afro-Portuguese commerce is discussed. This provides a model for understanding archaeological data from northern Zimbabwe which would then be related to the written, historical sources.

9.2 Cultural succession in the research area

Cultural succession is not merely a simple process of development of ceramic styles over time, but also as a social process in which we can deduce elements of settlement patterning and organisation. This is one way of understanding state formation and development.

A limited number of hunter-gatherer community sites has been reported. The distribution of such sites is imperfectly understood, although the impression would be that of a low frequency.

Computer simulated relative density maps confirm the assertion that the density of these sites in northern Zimbabwe is low (Sinclair 1987, Maps 1 and 2). The sites have been dated broadly from the beginning of the Holocene to the early first millennium.

None of the early farming and iron using community sites in the research area has been excavated but inferences can be made from previous research carried out by Garlake (1969b), and the on going research by Pwiti (forthcoming) in the Zambezi Escarpment and Dande.

The Swart Resettlement Village and Madzinga Farm ceramic assemblages are comparable to the excavated pottery from Chitope and Zombepata Cave, close to the Gurungwe Gap, near the Great Dyke, and to that excavated by Pwiti on the banks of the Kadzi River, in Dande.

Garlake obtained one radiocarbon date for Chitope (850+/−95 BP) (SR-163) (uncalibrated). A single translucent grey blue cylinder bead, 3 mm in diameter and 4 mm long, of stratified cone glass was also recovered from the site. The bead probably dates to the end of the first millennium. Chitope is a rare example of a terminal Early Farming Community site where imported Chinese blue and white pottery has been found. The sherd was dated to the 15th or 18th century, and it probably post-dates the site. No imported pottery was recovered from Swart Resettlement Village or Madzinga.

Garlake observed that the stamp decorated ware at Chitope has clear affinities with Gokomere/Ziwa wares but significant differences were found in the decoration which is sparse and the rims and vessel forms which are simpler. The dragged or stabbed decorations at Chitope are also found on some Ziwa vessels. The pottery from Chitope is not related to that recovered at Maxton Farm, near Bindura (Garlake 1967b). When Garlake excavated Chitope, no similar assemblage had been described before. However Crawford (1967) had reported a site near Bindura, 70 km south of Mt Darwin and about 72 km southeast of Chitope which had similar material. Recent archaeological surveys show a wider distribution of these sites especially in the Guruve and Dande areas of northern Zimbabwe. Radiocarbon dates obtained from Kadzi suggest a multi-phase occupation. Two radiocarbon dates (uncalibrated) have been obtained: 990+/−50 BP (Ua-3194) from the upper levels and 1290+/−50 BP (Ua-3195) from the middle levels, in an occupation sequence of 220–30 cm (Pwiti, pers. comm). The predominantly white translucent glass beads recovered from the site suggest an exchange network with the east coast probably through the Zambezi.

Sites like Mupfuri River, Madzinga, Chitope and Kadzi provide ample evidence to make inferences on the nature of transition from at least the late first millennium to the early first millennium AD, and how northern Zimbabwe was gradually incorporated into the western Indian Ocean zone commercial network. Future research should com-
pare these sites with those across Zambia where similar material has been found in the Dambwa tradition assemblages (cf. Fagan et al. 1969).

Radiocarbon chronology supports the supposition that Musengezi sites represent the basic population of northern Zimbabwe before the spread of the Great Zimbabwe tradition and the formation of the Mutapa state (Soper & Pwiti 1988, Soper 1990). Evidence from the Centenary area to the west provides a convincing overlap with the Great Zimbabwe tradition, and there are suggestions of interaction between these two communities (Soper 1989).

Few Musengezi sites have been recorded in the research area (see Chapter 4), and a Musengezi occupation has been suggested at Baranda (see Chapter 7). The Musengezi pottery recovered at Ruanga is discussed by Garlake (1973b), and Soper (1990). Probably the research area did not provide an ideal environment for Musengezi settlements, which is usually broken country with rocky hills and outcrops.

The position of the Great Zimbabwe tradition sites in northern Zimbabwe has been commented upon elsewhere (Garlake 1973a, 1973b, 1973c, 1978; Sinclair & Lundmark 1984; Sinclair 1987; Soper 1989). None of the stone walls found in the research area have been dated but the presence of foreign trade goods dating to the 16th and 17th centuries in unwalled sites with graphite burnished pottery such as Baranda suggests a continuity of the tradition into the historical period.

During the late 16th and the entire 17th century, there seems to be widespread disruption in the settlement process. The same applies to trade as there is a fall in the volume imports (see for example the bead frequencies in Tables 19 and 21). This represents a new phase of settlement in the region characterised by the building of defensive structures, both stone walled and unwalled, sited on hills and mountains of difficult access.

9.3 Settlement patterning

Early farming community sites represent settled village life with at least a well established domestic craft production (iron smelting).

The pattern of these sites is not yet clear at the regional level, but locally it conforms with agriculturally suitable reddish to reddish-brown soils close to stream sources or river valleys. The location of iron deposits and the need for water in the industrial production process are some of the siting factors which might have a bearing on the settlement pattern. The size of these sites suggests a level of organisation above the household level.

The archaeological evidence for the Musengezi sub-tradition sites in the research area is too little to present reliable information on settlement function and patterning. Valid assumptions are made here on the basis of investigations carried out elsewhere in northern Zimbabwe. The multiple burial site at Mbagazewa in the Mutonashanga area may suggest a level of community participation or ritual obligation at village or higher organisational level. We can assume that before the formation of the Mutapa state, Musengezi sub-tradition sites were organised as communities roughly defined as a chieftain (cf. Carmo 1981, p. 45). There is sufficient evidence to suggest a slight change in social organisation following the introduction of the Great Zimbabwe tradition in the area. At Wazi Hill in Centenary a Great Zimbabwe tradition settlement is built within a Musengezi village with elements indicating some social differentiation (Soper & Pwiti 1988; Soper 1989).

At a local level, all the sites of the Great Zimbabwe tradition in the research area are located in areas of light grey sandy soils indicating perhaps the importance of agriculture in the domestic economy. At a regional level Sinclair (1987, p. 123) used density maps to account for the distribution pattern of Great Zimbabwe tradition sites on the Zimbabwe plateau. His observations on northern Zimbabwe are important. He saw the northernmost extension of the Great Zimbabwe Tradition occurring either around the periphery or in areas in between the Harare and Musengezi site clusters. The Mt Darwin cluster represents a loose grouping of sites. The number of unwalled sites with graphite burnished pottery suggest an increase in the intensity of settlement in this area. By the historical period some settlements had assumed greater importance than others. This trend is synonymous with the development of state societies.

At both the local and the regional level the distribution of the loopholed stone structures and sites with similar pottery seems to impose a new pattern on the already existing spatial structure of Great Zimbabwe tradition sites. This pattern conforms almost exclusively to highland topography, representing a change on the landscape. The pattern shows a preference of hills or mountains which are difficult of access. In cases where such settlements are easily accessible there is an increase in the number of loopholes on the part of the stone enclosures, or a decrease in the size of the settlement on the part of unwalled sites.

9.4 The environmental correlates

The spatial pattern of settlement around Baranda is that of a tight cluster of sites within at least a uniform soil environment. The impression this pattern would present to the observer is that of a dense population taking advantage of both the agricultural potential offered by the area and the trading opportunities at Baranda. While this focal
character in the pattern seems valid in the long term, it may be necessary to consider the settlements in terms of past human management of these soils. This model would explain why the historical records do not mention any environmental catastrophe in terms of agriculture. Some of the settlements such as Bhaskiti Fields and Murehwa (Farm 148) are sizeable enough to be termed elite residences located in strategic environmental areas.

Agricultural production is less evident for the occupants of loopholed stone structures, as they relied heavily on hunting. This represents a sudden hiatus on the normal conditions operating in the research area for the previous two centuries (16th and 17th). These people were probably adapting to the new conditions. If Whitlow’s (1983) association of the vlei cultivation near Rusape with an unwalled site and three loopholed stone structures in the area is accepted, then these communities might have engaged in vlei cultivation. They are therefore comparable with the inhabitants of the Nyanga highlands and lowlands who employed extensive terracing to manage the poor soils, and built clusters of settlements around fortifications (cf. Summers 1958). However the evidence for this in the research area has been obliterated by human settlement in the vleis.

The geology seems to have placed minor constraints in the construction of Great Zimbabwe tradition stone structures. There were no immediate advantages in siting elite centres in high mountains such as Fura, Mahonje or Chizinga when lower, granite surfaces were available. It is probable that the security factor did not originally dictate the siting of Great Zimbabwe tradition settlements. The cessation of stone building of this tradition sometime before the middle of the 16th century needs some explanation. The Mahonje tradition does not seem to represent a state organisation, but evidence of an internal disruption in the research area. The siting factors indicate the limited scale in which these sites must have operated. While the settlement pattern can be explained on the basis of relief, settlements also aggregate for social reasons.

In this case, the social dimension of the settlements is expressed in their clustering in selected mountain ranges. The political or ideological implications of this are not clear, but we can postulate lack of complexity: these sites may possibly have operated at chieftaincy level. This is discussed below.

9.5 The socio-political contexts of Great Zimbabwe and Mahonje tradition sites

I now put the discussion of Great Zimbabwe and Mahonje tradition sites into a broad social perspective by first examining the Shona socio-economic organisation as known from ethnography and then propose a model to account for the decline of the Mutapa state during the historical period.

Social organisation is more difficult to interpret from surviving archaeological evidence than either subsistence or settlement structure because it has less tangible manifestations (cf. Orme 1981, p. 135). Archaeologists must beware of the many ways in which pre-colonial, historical period societies were organised beyond those familiar through the artifactual remains. Anthropological models can assist greatly in this respect, at least in adopting simple approaches to the structures of past settlement. These have the same potential for archaeologists as other kinds of models, and produce the desired results if used properly (cf. Dalton 1981, pp. 17–8).

There are a number of systems of group arrangement, and in understanding state formation some researchers have devised classifications in which they see human development in evolutionary terms from band, through tribe and chiefdom to state.

Another less evolutionary way of understanding human development to state level is examining group size in relation to settlement extent such as family, neighbourhood, village, confederacy, etc. Anthropologists have shown that every society has at least a minimal level of leadership, revealed in the course of major group activities. On the Zimbabwe plateau, kinship is important because it delimits the basic units of Shona and non-Shona communities.

Anthropologists, archaeologists and historians have interpreted the Mutapa state structures in markedly different ways (cf. Wieschhoff 1941; Abraham 1959, 1962, 1964; Beach 1980; Madenge 1988) and it is difficult to search for a common ground in which an analysis of such scale can be done (Sinclair 1987). This is mainly because the data are exposed to ‘markedly different theoretical frameworks, preconceptions, models and conceptual vocabularies.’ (Dalton 1981, p. 26).

The people of the Mutapa state were known as Karanga. Karanga is also a historic name for most people known today as Shona (Madenge 1988, p. 21). The basic organisation of Shona settlements is important in understanding settlement organisation and concept of territory, at least during the historical period. The units of Shona socio-economic organisation are presented in detail in a number of works (cf. Holleman 1952; Beach 1980, 1984a; Sinclair 1987; Madenge 1988). In general social composition becomes less homogeneous from the dunhu (ward) to the nyika (territorial) level (Holleman 1952, p. 15; Madenge 1988, p. 17). I will focus on the nyika since its size (30–90 km across) approximately corresponds with my research area. It is at this level that the basis of a chiefdom has been observed. The character of Karanga chiefdoms is discussed by Weinrich (1971). In the nyika are the vatorwa, the majority of the population owing alle-
giance to the chief and his patrilineage (machinda). They belong to a number of other lineages. The bulk of the vatorwa usually come into the territory in search for land or political safety or as individual families eager to settle with or near their maternal or uterine relatives, or with their inlaws (Holleman 1952, p. 16). This point is important in understanding Great Zimbabwe tradition settlement in northern Zimbabwe as the area was already populated by the Harare-Masengezi tradition sites.

The premise that the stone structures were revolving centres of political power (Sinclair 1987) is accepted here because it is based on an interplay of archaeological and environmental data. In northern Zimbabwe the shift in the capitals of the ruling Mutapas is mentioned in written sources. The settlement pattern suggested by distribution maps of Great Zimbabwe tradition clusters is generally a northward shift from the highveld, probably keeping within the confines of agriculturally viable agroecological zones, and at the same time taking advantage of the commerce with the Zambezi valley and the Indian Ocean.

This pattern operated normally until the historical period when foreign mercantile capital was introduced in northern Zimbabwe. I argue here that the inception of Portuguese mercantile activity in northern Zimbabwe led to a creation of a settlement system which competed with that observed or suggested for Great Zimbabwe tradition settlement or Mutapa capitals. The settlement pattern of the trading centres presented in Chapter 5 (Map 17) is reviewed and results integrated with the archaeological evidence from the research area.

9.6 The Afro-Portuguese settlements

The trading sites are linked to the east coast, through the Zambezi. Some of them, for example Luanze and Bokuto were primarily stepping stones from which traders would then proceed into the heart of the Mutapa state. We should then expect interior sites to be larger in size, and more important in terms of commerce. This is certainly true with Dambarare, and probably Massapa.

The apparent settlement pattern is that of a fairly regular spacing of sites. Initially these sites were set up according to the dictates of the Mutapa rulers (see Chapter 5). The probable intention of the local rulers was to create zones of commercial interaction in between major centres or courts of state power, and at the same time dictate the terms of the trade (see Map 38). There are sites further west of the core area of the Mutapa state, for example Rimuka, Angwa and Chipiririri. These do not fit the pattern suggested above as they were set up after the loss of the plateau area by the Mutapa. They probably acted as outposts of Zumbo, on the Zambezi.

In addition the coastal orientation of the sites served as lines of retreat following uprisings in the interior. Traders were able to defend themselves while in the process of retreat. It would certainly not be advantageous to overstretch the trading network as long as sufficient markets existed in the state to meet the demands of the traders. Seventeenth century written sources support this assertion clearly. These trading places should not be perceived simply as purely Portuguese. They are African settlements in which, apart from imports, we find local pottery. A new network of relationships emerges, and this complicates the original settlement pattern.

With the introduction of Portuguese commerce, we see two competing settlement patterns: the pattern dominated by Great Zimbabwe tradition settlements, and that which was dominated by Afro-Portuguese trading centres. It seems the latter pattern eventually dominated the former. At Baranda we see the impact of Portuguese merchant capital on the internal dynamics of the Mutapa state. The reason why Mahonje intrudes the core of the state is that merchant capital results in structural transformations in the state which results in the reduction of state power.

9.7 Presenting the model

The basic social formation on the Zimbabwe plateau before the coming of mercantile capital is that which controlled access to productive resources and specific territory (cf. Sinclair 1987, Ch. 8). Forms of political power were clearly visible, for example in stone architecture, which marked residential areas for the ruling elite. This ability to control certain territory and access to resources constituted the basis of power in Shona society. Agriculture was the backbone of the economy, and there was a sharing of food resources in times of hardship to counteract disaster.

This scenario changed with the coming of European mercantile capital which exerted excessive demands on the local population. Although it has been established that gold mining and ivory hunting were basically seasonal activities, these sectors of production required more investment in terms of time. This undermined the basis of state political power (agricultural production and the tributary system) which could not be adequately maintained as a result of a shift in the productive and accumulation patterns. The state is expected to break into polities, reflecting a weakening of central political power caused by a more widespread participation by individuals in trading activities. This is reflected by a widespread distribution of imported goods than previously. The result is a decline in centralised authority. The rulers are less visibly wealthy. People are continuously contributing less towards their rulers' wealth, but more towards their own.
During the historical period state residences probably assumed a centrality in relation to trading places. The reason for this assumption is that the trading centres apparently dominated the overall settlement pattern in northern Zimbabwe from the late 16th to the whole of the 17th century. The archaeological evidence from the research area suggests that sites around major centres acted as recipients of imported goods (see Map 11) and Table 2). This probably means that mercantile capital dictated the settlement pattern. This transformation from a moving capital to an integrated centre on a fixed basis placed northern Zimbabwe firmly into a wider commercial and regional network. The articulation of merchant capital and social formation in northern Zimbabwe clearly transformed Mutapa society and political power. The people of the Mutapa state were indulging in the accumulation of valuable articles reflecting the impact of foreign capital on Shona society.

This model is taken as the basis for the decline of the Mutapa state. In northern Zimbabwe, we should expect the following manifestations: The emergence of segmented communities which are analogous to smaller groups which had existed a few centuries earlier before state formation; or the reduction of the state to smaller territories; and the existence of highly organised societies surviving in the periphery with similar organisational styles of the collapsed state. With the destruction of the centre, there are local movements of small population groups. There is also a significant reduction of population in the core of the state. The distribution pattern of settlements in the centre should conform with hilly or mountainous topography for purposes of defence (cf. Renfrew 1984, 1986; Jonsson 1988). On a social level we expect the following: a lower degree of social differentiation in the overall pattern of the sites; less regulation and integration of the local economy and external trade as compared to the previous phase; and less overall coordination of individuals and groups. This satisfies Tainter's (1988) manifestation of collapse. This observation relates directly to the information on hilltop sites presented in Chapter 6. The resulting social formation represents a palimpsest in terms of settlement pattern and cultural change on pre-existing patterns.

9.7.1 The identity of Baranda

Cartographic sources do not mention any capital sites in the vicinity of Mt Fura (see Chapter 6). Baranda should be regarded as a territorial centre which was also part of a wider trading network. With a heavy foreign component on the site, Baranda was apparently organised in a way markedly different from the preceding Great Zimbabwe tradition stone structures.

The level of organisation at Baranda is above the family unit. The settlement reflects socio-economic transformation through material culture. This change to new forms of material culture represents an intervening stage between the Great Zimbabwe and the Mahonje traditions. Baranda has a dual identity. It is part of Afro-Portuguese trading network. There is also a diagnostic local component as reflected in the material culture, especially pottery. At Dambarare, Luanze, Rimuka and other places of Afro-Portuguese contact, the local material has not been adequately defined. Although written sources mention the setting up of trading markets on these sites by the Portuguese, it is erroneous to regard them as such without first examining the local material. The socio-economic changes discerned at Baranda probably account for the many Mutapa sites without stone walling.

9.7.2 The Mahonje tradition

The Mahonje tradition is regarded here as representing an inflow of people and as evidence of state decline. Such an interpretation is normally regarded as an old diffusionist model for explaining change in the archaeological record, or in this case, decline in socio-cultural complexity. The movements discussed here are limited translocations of people between adjacent regions, which are largely alluded to in the written sources, and which, in normal archaeological situations where documentary evidence is lacking, are difficult to establish. A reversal of such a process is difficult to establish archaeologically. If the demographic parameters presented in Chapter 2 are taken into consideration, Mahonje should be regarded as a movement to the centre from the periphery. The entire process of movement is certainly complicated to the extent that at least since the historical period the ethnic composition of northern Zimbabwe and the adjacent Zambezi valley is heterogeneous to this day (cf. Isaacman 1972a, 1972b; Beach 1980) (see also Map 39).

An alternative hypothesis would have been to examine the extent to which the Mutapa state transformed to Mahonje. It is difficult to argue this way given the documented historical Karanga migrations to the south in the 17th and 18th centuries (Beach 1980), a movement away from the core of the state to areas beyond the periphery. However, I see remnants of the Great Zimbabwe tradition being incorporated into the Mahonje tradition but not as dominant elements. The ceramic evidence presented in Chapter 7 partially supports this view.

9.7.3 Testing the model: the historical evidence

The concept of chiefdom in post state societies is applied here as a method of understanding the socio-political context of the Mahonje tradition. Mahonje tradition sites in
the research area are regarded here as equivalent to a chiefdom for the following reasons: Firstly loopholed stone structures are architectural remains large, though not elaborate enough to have required the organised labour of people. Secondly there are large sites which clearly indicate an operation at least at village level. Thirdly the stone structures of the tradition are grouped in a pattern which indicates they did not operate singly, but in groups. These are clear manifestations of collapse as defined above.

The 17th century conflicts in the lower Zambezi valley have been documented historically. These had ripple effects in adjoining regions. In addition Portuguese activities in the heartland of the Mutapa state from 1630 onwards resulted in serious depopulation and desertion of gold producing areas (see Chapter 6). For the Mutapa rulers to retain influence and control on the plateau, they had to resettles some of the people in these areas.

Isaacman (1972a) points out that the Tonga, Sena and Tavara and other small Zambezi valley groups were conquered populations lying in between the Mutapa state to the south of the Zambezi and the Maravi state to the north. Politically these groups were organised as small ‘chiefdomies’, where in a given territory a chief was assisted by several village headmen, and in much larger areas a lineage relationship existed whereby a chief was assisted by smaller territorial chiefs. Isaacman (1972a) argues that both the Maravi and the Mutapa states never managed to effectively control the lower Zambezi, thus creating a power vacuum. The Zambezi constituted a frontier to both states. This explains why most of the uprisings in the Mutapa state stemmed from this area.

The political organisation of some of the Zambezi valley communities is probably reflected in the spatial organisation of the loopholed stone structures. These sites were probably built collectively by small chiefdoms or chiefdomacies. They represent the broader social relationships attained through past interaction, and also through a collective response to problems of a mutual character. In this case they are comparable to the Nyanga terrace communities dated broadly to the same period (Summers 1958; Beach 1980; Hall 1987).

Beach (1980, pp. 164–5; 1984a, p. 45) has shown that much of the plateau section of the Mutapa state had been re-allocated during the middle of the 17th century to new groups from outside the state. Prominent among these were the Budyas, who were living in the lower Zambezi Tonga speaking territory of Barwe. The Budyas occupied Mutoko where they set up a complex of dynasties. Beach dates this settlement process to around 1650. Other groups also moved and settled in the heart lands of the state, at the invitation of the Mutapa rulers. Beach (1980, p. 136) also reports that the areas to the west of Massapa and Mt Fura were given to the Madziwa dynasty as part of the land grants by Mutapa Mukombwe. Traditionally part of the area in which this research focuses belonged to Bvuma, and a hill in the research area with pottery defined in this work as Assemblage 4 (see Chapter 7) is called by the same name (see Map 12).

9.8 Future prospects

What I have presented regarding the archaeological identity of the Mutapa state is certainly not the final statement. The model I have proposed is intended to generate more debate in the current discussion on the historical Mutapa state. A major theme under which this work was undertaken is the development of urbanism in the East African region. This theme has not been dealt with in this work although I have gathered sufficient evidence to demonstrate the existence of an urban phenomenon in northern Zimbabwe. Baranda may be interpreted in this way (Sinclair, Pikirayi, Pwiti & Soper 1993; Pikirayi 1993).

The cartographic data presented in Chapter 6 shows the need to conduct detailed field surveys across the Ruya to the north to locate some of the state capitals. Future research in northern Zimbabwe should also aim at addressing some of the issues on a more regional or world scale. I have tried to interpret the presence of imported material in this way. This approach appreciates the level of complexity attained by the societies concerned and the physical networks involved in conducting the commerce. Site territories around trading settlements such as Dambarare, Luanze, Angwa and others should be intensively surveyed to establish the autochthonous phenomena more clearly, as the conclusions given in this work are only tentative. This research will benefit from the available range
of oral-historical sources which can be utilised to assist interpreting the archaeological data.

The major problem in operating on a regional scale is the question of boundaries. We know however that the Mutapa state operated within geographical boundaries, and it was only after the break away of certain territories, and the Portuguese settlement on the Zambezi that it gradually lost its eastern and northern frontier. The western extent of the Mutapa state has not been clearly defined but one can assume on the basis of the oral and written sources that it did not exceed the Angwa. This is an area with cultural material which has been attributed to or influenced by population groups from Zambia (Fagan 1963; Fagan et al 1969; Garlake 1970b; Huffman 1971a, 1979, 1989b; Robinson 1966b). Some traders from Zambia must have operated in the Mutapa state before and during the historical period, and it is important to document the nature of this interaction.

There are still unsolved questions such as the archaeological identity of the Korekore and Zezuru Shona dialect clusters. The present state of archaeological evidence suggests that these groupings are a function of political classification. Are we talking of social or territorial differences within the Mutapa state, and if so do these linguistic entities have cultural identity and definite territory? The tentative answer given here is that Shona society during the historical period is diverse and complex. I also leave this question for future investigators to solve.
REFERENCES

Beach, D. N. 1984b. Towards a population history of precolonial Zimbabwe. Seminar Paper, University of Zimbabwe, History Department.

193

Brumfit, W. 1980. *Aspects of History of Zimbabwe: Sources, Methods and Results of Archaeology, History and Ethno-history for the Period from the Beginning of the Late Iron Age until the 18th Century*. Prepared for the main seminar of Professor Ziegert, Archaeological Institute in Hamburg in the context with a course in 'African Studies,' Hamburg.

Mupira, P. 1991. A classification of imported glass beads from

The Oriental Ceramic Society of Hong Kong, 1975. Exhibition of Blue and White and related Underglaze Red. Hong Kong: Urban Council City Museum and Art Gallery.

The Oriental Society of Hong Kong and the Ping Sham Museum, 1977. Chinese Polychrome, Catalogue of an Exhibition in the Ping Sham Museum. Hong Kong: University of Hong Kong.

Soper, R. C. nl. Some stone structures on Mt Fura. Unpublished notes.
The South-East Asia Ceramic Society. 1971. The Ceramic Art of South-East Asia: The South-East Asia Ceramic Society first annual exhibition. University of Singapore: Art Museum.
BAR International Series 551.
Tracey, H. 1940. António Fernandes, Descobridor do Mono-
moda 1514–1515: Tradução Portuguesa e notas por Ca-
tano Monte, encarregado do arquivo histórico de Mocam-
bique. Lauroreno Marques: Edição do Arquivo Histórico de Mozambique.
Van der Leeuw S. E. & A. C. Pritchard (eds) 1984. The Many Dimensions of Pottery: ceramics in archaeology and anthropo-
logy. University of Amsterdam.
Volkert, T. 1954. Porcelain and the Dutch East India Compa-
ny as recorded in the Dutch Register of Batavia Castle, those of Hrardo and Heshima and other contemporary papers, 1602–1867. Leiden: E. J. Brill.
Wafawakama, M. 1991. A comparative analysis of Musengezi tradition and Great Zimbabwe small finds from sites in North-
ern Mashonaland. Unpublished BA Special Honours disserta-
tion. University of Zimbabwe: History Department.
Wallerstein, I. 1974. The modern world system. New York: Aca-
demic Press.
Welinder, S. 1988. The landscape of prehistoric man. Memo-
randum Societas Fauna Flora Fennica 61, 50–6.
Wilnot, A. 1986. Monomatapa (Rhodesia): Its monuments and its history from the most ancient times to the present centu-
Wilson, D. R. 1984. Air Photo Interpretation for Archaeolo-
Whitehouse, D. 1973. Chinese stoneware from Sira: the earli-
Whitlow, I. 1980a. Landuse, population pressure and rock out-
Whitlow, I. 1980b. Agricultural potential in Zimbabwe: a fac-
Whitly, A. 1957. The origins of the stone architecture of Zim-

Studies in African Archaeology

Distribution:
The Swedish Central Board of National Antiquities
P O Box 5405, S-114 84 Stockholm.

Distribution:
Department of Archaeology, Uppsala University
Gustavianum, S-753 10 Uppsala, Sweden

ISSN 0284-5040
ISBN 91-506-1007-4